scholarly journals Estimation of flood frequency using statistical method: Mahanadi River basin, India

2020 ◽  
Vol 3 (1) ◽  
pp. 189-207
Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Abstract Estimating stream flow has a substantial financial influence, because this can be of assistance in water resources management and provides safety from scarcity of water and conceivable flood destruction. Four common statistical methods, namely, Normal, Gumbel max, Log-Pearson III (LP III), and Gen. extreme value method are employed for 10, 20, 30, 35, 40, 50, 60, 70, 75, 100, 150 years to forecast stream flow. Monthly flow data from four stations on Mahanadi River, in Eastern Central India, namely, Rampur, Sundargarh, Jondhra, and Basantpur, are used in the study. Results show that Gumbel max gives better flow discharge value than the Normal, LP III, and Gen. extreme value methods for all four gauge stations. Estimated flood values for Rampur, Sundargarh, Jondhra, and Basantpur stations are 372.361 m3/sec, 530.415 m3/sec, 2,133.888 m3/sec, and 3,836.22 m3/sec, respectively, considering Gumbel max. Goodness-of-fit tests for four statistical distribution techniques applied in the present study are also evaluated using Kolmogorov–Smirov, Anderson–Darling, Chi-squared tests at critical value 0.05 for the four proposed gauge stations. Goodness-of-fit test results show that Gen. extreme value gives best results at Rampur, Sundergarh, and Jondhra gauge stations followed by LP III, whereas LP III is the best fit for Basantpur, followed by Gen. extreme value.

Author(s):  
Naz Saud ◽  
Sohail Chand

A class of goodness of fit tests for Marshal-Olkin Extended Rayleigh distribution with estimated parameters is proposed. The tests are based on the empirical distribution function. For determination of asymptotic percentage points, Kolomogorov-Sminrov, Cramer-von-Mises, Anderson-Darling,Watson, and Liao-Shimokawa test statistic are used. This article uses Monte Carlo simulations to obtain asymptotic percentage points for Marshal-Olkin extended Rayleigh distribution. Moreover, power of the goodness of fit test statistics is investigated for this lifetime model against several alternatives.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 579
Author(s):  
Thomas Papalaskaris ◽  
Theologos Panagiotidis

Only a few scientific research studies, especially dealing with extremely low flow conditions, have been compiled so far, in Greece. The present study, aiming to contribute in this specific area of hydrologic investigation, generates synthetic low stream flow time series of an entire calendar year considering the stream flow data recorded during a center interval period of the year 2015. We examined the goodness of fit tests of eleven theoretical probability distributions to daily low stream flow data acquired at a certain location of the absolutely channelized urban stream which crosses the roads junction formed by Iokastis road an Chrisostomou Smirnis road, Agios Loukas residential area, Kavala city, NE Greece, using a 3-inches conventional portable Parshall flume and calculated the corresponding probability distributions parameters. The Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared, GOF tests were employed to show how well the probability distributions fitted the recorded data and the results were demonstrated through interactive tables providing us the ability to effectively decide which model best fits the observed data. Finally, the observed against the calculated low flow data are plotted, compiling a log-log scale chart and calculate statistics featuring the comparison between the recorded and the forecasted low flow data.


2020 ◽  
Vol 30 (4) ◽  
pp. 18
Author(s):  
Meeran Akram Fawzee ◽  
Samira M. Salh ◽  
Slahaddin A. Ahmed

Study the statistical distribution for rainfall is important to know the behaviour of the rainfall series and to know the most frequently rainfall amount in each month. Five statistical distribution were applied on Sulaimani, Erbil and Duhok rainfall series for the period (1941-2017) except Duhok (1944-2017). These distributions were Gamma(3P), Weibul(3P), Earlang (3P), Normal and General extreme value. Kolmogrove-Semirnov, Anderson-Darling and Chi-Square goodness of fit test were used to know the best fit distribution from these five distributions.


2017 ◽  
Vol 28 (2) ◽  
pp. 30-42 ◽  
Author(s):  
Lorentz Jäntschi ◽  
Sorana D. Bolboacă

AbstractStatistical analysis starts with the assessment of the distribution of experimental data. Different statistics are used to test the null hypothesis (H0) stated as Data follow a certain/specified distribution. In this paper, a new test based on Shannon’s entropy (called Shannon’s entropy statistic, H1) is introduced as goodness-of-fit test. The performance of the Shannon’s entropy statistic was tested on simulated and/or experimental data with uniform and respectively four continuous distributions (as error function, generalized extreme value, lognormal, and normal). The experimental data used in the assessment were properties or activities of active chemical compounds. Five known goodness-of-fit tests namely Anderson-Darling, Kolmogorov-Smirnov, Cramér-von Mises, Kuiper V, and Watson U2 were used to accompany and assess the performances of H1.


Author(s):  
Muhammad Fadhil Marsani ◽  
Ani Shabri ◽  
Nur Amalina Mat Jan

Understand the extreme volatility in the market is important for the investor to make a correct prediction. This paper evaluated the performance of generalized lambda distribution (GLD) by comparing with the popular probability distribution namely generalized extreme value (GEV), Generalized logistic (GLO), generalized Pareto (GPA), and Pearson (PE3) using Kuala Lumpur composite index stock return data. The parameter for each distribution estimated using the L-moment method. Based on k-sample Anderson darling goodness of fit test, GLD performs well in weekly maximum and minimum period. Evidence for preferring GLD as an alternative to extreme value theory distribution also described.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-67
Author(s):  
Rashidul Hasan Rashidul Hasan

The estimation of a suitable probability model depends mainly on the features of available temperature data at a particular place. As a result, existing probability distributions must be evaluated to establish an appropriate probability model that can deliver precise temperature estimation. The study intended to estimate the best-fitted probability model for the monthly maximum temperature at the Sylhet station in Bangladesh from January 2002 to December 2012 using several statistical analyses. Ten continuous probability distributions such as Exponential, Gamma, Log-Gamma, Beta, Normal, Log-Normal, Erlang, Power Function, Rayleigh, and Weibull distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the temperature data, several goodness-of-fit tests were applied, including the Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test. The Beta distribution is found to be the best-fitted probability distribution based on the largest overall score derived from three specified goodness-of-fit tests for the monthly maximum temperature data at the Sylhet station.


2018 ◽  
Vol 23 ◽  
pp. 00001
Author(s):  
Katarzyna Baran-Gurgul

Based on 30-year 24-hour flow sequences at 69 water gauging stations in the Upper Vistula catchment, it was determined that the probability distributions of the low flow duration and its maximum annual deficit can be described by the gamma distribution with the estimated parameters by the methods: MOM, the method of moments, LMOM, the method of linear moments, and MLE, the method of maximum likelihood. The stationarity of the time series was tested by the Mann-Kendall correlation using the Hamed and Rao variance correction. The low flows were defined by the SPA method, with the limit flow Q70%. The quality of the match was tested by the Anderson-Darling goodness of fit test. This test allowed accepting the gamma distribution in all analysed cases, regardless of the method used to estimate the distribution parameters, since the pv (p-values) values were greater than 5% (over 18% for Tmax and 7.5% for Vmax). The highest pv values for individual water gauging stations, as well as the highest 90% Tmax and Vmax quantiles were noted using LMOM to estimate the gamma distribution parameters. The highest 90% Tmax and Vmax quantiles were observed in the uppermost part of the studied area.


Sign in / Sign up

Export Citation Format

Share Document