Precipitation trends in Victoria, Australia

2014 ◽  
Vol 6 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Siti Nazahiyah Rahmat ◽  
Niranjali Jayasuriya ◽  
Muhammed A. Bhuiyan

Annual rainfall series trends were investigated for more than 100 years of data using two non-parametric trend tests Mann–Kendall (MK) and Sen's slope (Q) for five selected meteorological stations in Victoria, Australia. The annual rainfall time series showed no significant trends for any of the five stations. To assess the sensitivity of trends to the length of the time periods considered, the annual rainfall analysis was repeated using recent data from approximately half the data set between 1949 and 2011. Contrasting results from the original full data set analysis were revealed. All five stations showed decreasing trends with two stations showing significant trends suggesting that this recent time period has added more low precipitation data to the time series. The year of abrupt changes for all the five stations identified using the sequential MK test varied. Conclusions drawn from this paper, point to the importance of selecting the time series data length in identifying trends and abrupt changes. Due to the climate variability, trend testing results might be biased and strongly dependent on the data period selected. Therefore, use of the full data set available would be required in order to improve understanding of change or to undertake any further studies.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2335
Author(s):  
Feng Gao ◽  
Yunpeng Wang ◽  
Xiaoling Chen ◽  
Wenfu Yang

Changes in rainfall play an important role in agricultural production, water supply and management, and social and economic development in arid and semi-arid regions. The objective of this study was to examine the trend of rainfall series from 18 meteorological stations for monthly, seasonal, and annual scales in Shanxi province over the period 1957–2019. The Mann–Kendall (MK) test, Spearman’s Rho (SR) test, and the Revised Mann–Kendall (RMK) test were used to identify the trends. Sen’s slope estimator (SSE) was used to estimate the magnitude of the rainfall trend. An autocorrelation function (ACF) plot was used to examine the autocorrelation coefficients at various lags in order to improve the trend analysis by the application of the RMK test. The results indicate remarkable differences with positive and negative trends (significant or non-significant) depending on stations. The largest number of stations showing decreasing trends occurred in March, with 10 out of 18 stations at the 10%, 5%, and 1% levels. Wutai Shan station has strong negative trends in January, March, April, November, and December at the level of 1%. In addition, Wutai Shan station also experienced a significant decreasing trend over four seasons at a significance level of 1% and 10%. On the annual scale, there was no significant trend detected by the three identification methods for most stations. MK and SR tests have similar power for detecting monotonic trends in rainfall time series data. Although similar results were obtained by the MK/SR and RMK tests in this study, in some cases, unreasonable trends may be provided by the RMK test. The findings of this study could benefit agricultural production activities, water supply and management, drought monitoring, and socioeconomic development in Shanxi province in the future.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


Author(s):  
Bila-Isia Inogwabini

Rainfall time series data from three sites (Kinshasa, Luki, and Mabali) in the western Democratic Republic of Congo were analyzed using regression analysis; rainfall intensities decreased in all three sites. The Congo Basin waters will follow the equation y = -20894x + 5483.16; R2 = 0.7945. The model suggests 18%-loss of the Congo Basin water volume and 7%-decrease for fish biomasses by 2025. Financial incomes generated by fishing will decrease by 11% by 2040 compared with 1998 levels. About 51% of women (N= 408,173) from the Lake Tumba Landscape fish; their revenues decreased by 11% between 2005 and 2010. If this trend continues, women's revenues will decrease by 59% by 2040. Decreased waters will severely impact women (e.g. increasing walking distances to clean waters). Increasing populations and decreasing waters will lead to immigrations to this region because water resources will remain available and highly likely ignite social conflicts over aquatic resources.


Author(s):  
T. Warren Liao

In this chapter, we present genetic algorithm (GA) based methods developed for clustering univariate time series with equal or unequal length as an exploratory step of data mining. These methods basically implement the k-medoids algorithm. Each chromosome encodes in binary the data objects serving as the k-medoids. To compare their performance, both fixed-parameter and adaptive GAs were used. We first employed the synthetic control chart data set to investigate the performance of three fitness functions, two distance measures, and other GA parameters such as population size, crossover rate, and mutation rate. Two more sets of time series with or without known number of clusters were also experimented: one is the cylinder-bell-funnel data and the other is the novel battle simulation data. The clustering results are presented and discussed.


2004 ◽  
Vol 91 (3-4) ◽  
pp. 332-344 ◽  
Author(s):  
Jin Chen ◽  
Per. Jönsson ◽  
Masayuki Tamura ◽  
Zhihui Gu ◽  
Bunkei Matsushita ◽  
...  

2020 ◽  
Vol 12 (01) ◽  
pp. 2050001
Author(s):  
Yadigar N. Imamverdiyev ◽  
Fargana J. Abdullayeva

In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.


Sign in / Sign up

Export Citation Format

Share Document