scholarly journals Studying monthly rainfall over Dibrugarh, Assam: Use of SARIMA approach

MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi-Hui Pang ◽  
Hong-Bo Wang ◽  
Jian-Jian Zhao ◽  
De-Yong Shang

Hydraulic support plays a key role in ground control of longwall mining. The smart prediction methods of support load are important for achieving intelligent mining. In this paper, the hydraulic support load data is decomposed into trend term, cycle term, and residual term, and it is found that the data has clear trend and period features, which can be called time series data. Based on the autoregression theory and weighted moving average method, the time series model is built to analyze the load data and predict its evolution trend, and the prediction accuracy of the sliding window model, ARIMA (Autoregressive Integrated Moving Average) model, and SARIMA (Seasonal Autoregressive Integrated Moving Average) model to the hydraulic support load under different parameters are evaluated, respectively. The results of single-point and multipoint prediction test with various sliding window values indicate that the sliding window method has no advantage in predicting the trend of the support load. The ARIMA model shows a better short-term trend prediction than the sliding window model. To some extent, increasing the length of the autoregressive term can improve the long-term prediction accuracy of the model, but it also increases the sensitivity of the model to support load fluctuation, and it is still difficult to predict the load trend in one support cycle. The SARIMA model has better prediction results than the sliding window model and the ARIMA model, which reveals the load evolution trend accurately during the whole support cycle. However, there are many external factors affecting the support load, such as overburden properties, hydraulic support moving speed, and worker’s operation. The smarter model of SARIMA considering these factors should be developed to be more suitable in predicting the hydraulic support load.


Author(s):  
Vikas Chaurasia ◽  
Saurabh Pal

Abstract Purpose:Coronavirus disease is an irresistible infection caused by the respiratory disease Coronavirus 2 (SARS-CoV-2). It was first found in Wuhan, China, in December 2019, and has since spread universally, causing a constant pandemic. On June 3, 2020, 6.37 million cases were found in 188 countries and regions. Prevention is the only cure for this disease. A study was carried out on Coronavirous to observe the number of cases, deaths and recovery cases worldwide within a specific time period of five months. Based on this data, this research paper will predict the future spread of this infectious disease in human society. Methods:In our study, the data set was taken from WHO "Data WHO Coronavirus Covid-19 cases and deaths-WHO-COVID-19-global-data". This dataset contains information about the observation date, provenance/state, country/region and latest updates. In this article, we implemented several forecasting techniques: naive method, simple average, moving average, single exponential smoothing, Holt linear trend method, Holt Winter method and ARIMA, for comparison, and how these methods improve the Root mean square error score.Results:The naive method is best suited as described over all other methods. In the ARIMA model, utilizing grid search, we recognized a lot of boundaries that delivered the best-fit model for our time series data. By continuing the model, future predictions of death cases indicate that the number of deaths will increased by more than 600,000 by January 2020.Conclusion:This survey will support the government and experts in making arrangements for what is about to happen. Based on the findings of instantaneous model, these models can be adjusted to guide long time.


2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.


The challenging endeavor of a time series forecast model is to predict the future time series data accurately. Traditionally, the fundamental forecasting model in time series analysis is the autoregressive integrated moving average model or the ARIMA model requiring a model identification of a three-component vector which are the autoregressive order, the differencing order, and the moving average order before fitting coefficients of the model via the Box-Jenkins method. A model identification is analyzed via the sample autocorrelation function and the sample partial autocorrelation function which are effective tools for identifying the ARMA order but it is quite difficult for analysts. Even though a likelihood based-method is presented to automate this process by varying the ARIMA order and choosing the best one with the smallest criteria, such as Akaike information criterion. Nevertheless the obtained ARIMA model may not pass the residual diagnostic test. This paper presents the residual neural network model, called the self-identification ResNet-ARIMA order model to automatically learn the ARIMA order from known ARIMA time series data via sample autocorrelation function, the sample partial autocorrelation function and differencing time series images. In this work, the training time series data are randomly simulated and checked for stationary and invertibility properties before they are used. The result order from the model is used to generate and fit the ARIMA model by the Box-Jenkins method for predicting future values. The whole process of the forecasting time series algorithm is called the self-identification ResNet-ARIMA algorithm. The performance of the residual neural network model is evaluated by Precision, Recall and F1-score and is compared with the likelihood basedmethod and ResNET50. In addition, the performance of the forecasting time series algorithm is applied to the real world datasets to ensure the reliability by mean absolute percentage error, symmetric mean absolute percentage error, mean absolute error and root mean square error and this algorithm is confirmed with the residual diagnostic checks by the Ljung-Box test. From the experimental results, the new methodologies of this research outperforms other models in terms of identifying the order and predicting the future values.


Author(s):  
Khadija Shakrullah ◽  
Safdar Ali Shirazi ◽  
Sajjad Hussain Sajjad ◽  
Zartab Jahan

Lahore and Dhaka are rapid expanding and over populated cities of South Asia located in Pakistan andBangladesh respectively. The present study focuses on the evaluation of temperature variability in comparison of bothcities. This study primarily aims at the assessment and examination of temperature variations in both mega cities ofSouth Asia which are seasonal as well as the annual. The time series data were analysed by using statistical techniquesAutoregressive Moving Average Model (ARMA) and Autoregressive Integrated Average Model (ARIMA). The resultsreveal that the minimum temperature is increasing much faster than that of the maximum temperature of both cities.However, the temperature rise(in maximum and minimum) has been observed highest during the spring seasons in bothcities.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xinli Zhang ◽  
Yu Yu ◽  
Fei Xiong ◽  
Le Luo

This paper is aimed at establishing a combined prediction model to predict the demand for medical care in terms of daily visits in an outpatient blood sampling room, which provides a basis for rational arrangement of human resources and planning. On the basis of analyzing the comprehensive characteristics of the randomness, periodicity, trend, and day-of-the-week effects of the daily number of blood collections in the hospital, we firstly established an autoregressive integrated moving average model (ARIMA) model to capture the periodicity, volatility, and trend, and secondly, we constructed a simple exponential smoothing (SES) model considering the day-of-the-week effect. Finally, a combined prediction model of the residual correction is established based on the prediction results of the two models. The models are applied to data from 60 weeks of daily visits in the outpatient blood sampling room of a large hospital in Chengdu, for forecasting the daily number of blood collections about 1 week ahead. The result shows that the MAPE of the combined model is the smallest overall, of which the improvement during the weekend is obvious, indicating that the prediction error of extreme value is significantly reduced. The ARIMA model can extract the seasonal and nonseasonal components of the time series, and the SES model can capture the overall trend and the influence of regular changes in the time series, while the combined prediction model, taking into account the comprehensive characteristics of the time series data, has better fitting prediction accuracy than a single model. The new model can well realize the short-to-medium-term prediction of the daily number of blood collections one week in advance.


2020 ◽  
Vol 13 (02) ◽  
pp. 1-8
Author(s):  
Agrienvi

ABSTRACTChili is one of the leading commodities of vegetables which has strategic value at national and regional levels.An unexpected increase in chili prices often results a surge of inflation and economic turmoil. Study and modeling ofchili production are needed as a planning and evaluation material for policy makers. One of the most frequently usedmethods in modeling and forecasting time series data is Autoregressive Integrated Moving Avarage (ARIMA). Theresults of ARIMA modeling on chili production data found that the data were unstationer conditions of the mean so thatmust differenced while the data on the production of small chilli carried out the stages of data transformation anddifferencing due to the unstationer of data on variants and the mean. The best ARIMA model that can be applied basedon the smallest AIC and MSE criteria for data on the amount of chili and small chilli production in Central KalimantanProvince is ARIMA (3,1,0).Keywords: modeling of chilli, forecasting of chilli, Autoregresive Integrated Moving Avarage, ARIMA, Box-Jenkins.


2017 ◽  
Vol 12 (1) ◽  
pp. 43-50
Author(s):  
Umi Mahmudah

AbstractNowadays it is getting harder for higher education graduates in finding a decent job. This study aims to predict the graduate unemployment in Indonesia by using autoregressive integrated moving average (ARIMA) model. A time series data of the graduate unemployment from 2005 to 2016 is analyzed. The results suggest that ARIMA (1,2,0) is the best model for forecasting analysis, where there is a tendency of increasing number for the next ten periods. Furthermore, the average of point forecast for the next 10 periods is about 1,266,179 while its minimum value is 1,012,861 the maximum values is 1,523,156. Overall, ARIMA (1,2,0) provides an adequate forecasting model so that there is no potential for improvement.


2021 ◽  
Vol 19 (1) ◽  
pp. 150-162
Author(s):  
A.S. Akenbor ◽  
P.I. Nwandu

Nigeria was a major global exporter of cotton lint to international market during the colonial and post-colonial era till late 70s when the  country fully embraced oil exports to the detriment of the non-oil sector, cotton lint exports inclusive. However, Nigeria is gradually emphasizing agricultural exports again to earn huge foreign exchange, the oil sector having left the country in economic crises. This study utilized time series model particularly, Autoregressive Integrated Moving Average (ARIMA) to make forecasting of cotton lint exports in Nigeria by using 46 yearly observations (1970-2015). The model went through series of investigative and diagnostic tests in order to observe the usefulness of the model. The fitting of the selected ARIMA (2,1,2) model to the time series data, means fitting ARIMA (2,1,2) model of one first order difference. Smaller RMSE, MAE as well as Theil Inequality coefficient are actually preferred and justified that ARIMA (2,1,2) model was justified as adequate for the forecasting of cotton lint exports in Nigeria with AIC value of 20.96771, SIC value of 21.04881, MAPE value of 6751.231, RMSE of 93303.67 and R2 of 0.330951. A thirty-year period ahead of cotton lint exports is predicted. The observations signify a rising trend in exports hence; it will be available especially in the future for foreign trade in the next thirty years. The outcome from the study is valuable for trade organisations and investors in assessing the precariousness of the market structure.


Sign in / Sign up

Export Citation Format

Share Document