The Plan on the Adjustment of Water Distribution System in Korea Waterworks System

2007 ◽  
Vol 2 (4) ◽  
Author(s):  
Jinwoo Jeong ◽  
Wuk-Ryang Wi ◽  
Geum-bai Kang ◽  
Kuk-Yang Lee ◽  
Chang-Shin Park ◽  
...  

The primary objective of this plan is to consolidate the current water supply system of Korea organized in the unit of city and county into wide area in order to supply the deficient region by fully utilizing the superfluous water volume of neighboring city and county. Furthermore, it also aims to prepare for the penetration of large foreign water supplier into domestic market by securing competitiveness through consolidation of domestic medium and small water suppliers in consideration of the forthcoming market opening. We determined the regions for which supplying system needs to be adjusted by analyze regions with deficient and superfluous water through the forecast of water supply and demand for established life areas. Further, we established plan to utilize the superfluous water volume as an adjust multi-regional water supply system local water supply system such as water supply plan in the life areas, water supply plan between the life areas.

2013 ◽  
Vol 438-439 ◽  
pp. 1551-1554
Author(s):  
Shuang Hua He

Conventional demand-driven models of water supply system are formulated under the assumption that nodal demands are statistic constants, which is not suitable for the cases where nodal pressure is not sufficient for supplying the required demand. An efficient approach for pressure-dependent demand analysis was developed to simulate the hydraulic states of the network for low pressure scenarios, and the mean-first-order-second-moment method was introduced to do the functional reliability analysis of post-earthquake water supply system, which can be applied to further study for seismic performance control analysis of water distribution system.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6221
Author(s):  
Jedrzej Bylka ◽  
Tomasz Mróz

The water supply system is one of the most important elements in a city. Currently, many cities struggle with a water deficit problem. Water is a commonly available resource and constitutes the majority of land cover; however, its quality, in many cases, makes it impossible to use as drinking water. To treat and distribute water, it is necessary to supply a certain amount of energy to the system. An important goal of water utility operators is to assess the energy efficiency of the processes and components. Energy assessments are usually limited to the calculation of energy dissipation (sometimes called “energy loss”). From a physical point of view, the formulation of “energy loss” is incorrect; energy in water transport systems is not consumed but only transformed (dissipated) into other, less usable forms. In the water supply process, the quality of energy—exergy (ability to convert into another form)—is consumed; hence, a new evaluation approach is needed. The motivation for this study was the fact that there are no tools for exergy evaluation of water distribution systems. A model of the exergy balances for a water distribution system was proposed, which was tested for the selected case studies of a water supply system and a water treatment station. The tool developed allows us to identify the places with the highest exergy destructions. In the analysed case studies, the highest exergy destruction results from excess pressure (3939 kWh in a water supply system and 1082 kWh in a water treatment plant). The exergy analysis is more accurate for assessing the system compared to the commonly used energy-based methods. The result can be used for assessing and planning water supply system modernisation.


The study presents the hydraulic design and analysis of Rural Water Distribution System (WDS) for Nava shihora region of zone 1 of the state of Gujarat, India. Water supply distribution system is designed for this study for population estimated for future 30 years. LOOP 4.0 and Water Gems v8i software have been used and the results are compared to determine the economical size of pipes for water distribution system. The economical size of pipes of water supply distribution system is designed by considering the constraints; residual pressure at each node, velocity of flow in pipe, head loos in pipes, material of pipes, elevated service reservoir level, peak factor and available commercial pipe diameters. Further water distribution system has been analyzed for extended period simulation (EPS) for the present population scenario for intermittent water supply using Water Gems v8i. Further water supply system is analyzed the residual chlorine concentration at nodes and in the pipe links and also the total cost of water supply system of rural region is estimated.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


2019 ◽  
Vol 97 ◽  
pp. 05020
Author(s):  
Artur Khachatryan ◽  
Emil Khachatryan

Risks in the water distribution system in the Armenian village of Noratus, have been assessed and treated following a risk management study based on the ISO 31 000:2009 standards, but extended for a strategic and long term level of analysis. The main goal is to ensure the safety of the whole water supply system. The brief description of the region as well as the current condition of the water supply system is given in order to clarify system features. The risk management here presented approach is now implemented in the Noratus network. Simulation have been performed using the AWARE-P software platform with the purpose of identifying critical components in the network and the asset probability of structural failure, as inputs for risk quantification. Then the risk magnitude is evaluated with the introduction of risk matrix. The phases of risk estimation and treatment are also carried out to propose the solutions for risk level reduction.


2018 ◽  
Vol 15 (30) ◽  
pp. 497-503
Author(s):  
A. B. dos SANTOS ◽  
É. C. DIAS ◽  
G. P. C. da SILVA ◽  
R. P. RIBEIRO ◽  
A. M. SILVA

Due to the events of the last years, when, mainly the Southeast region of Brazil has experienced one of the worst periods of water shortage, there has been a process of national awareness for the need of care with the quality and quantity of water. Therefore, currently in the national and world scenario is seeking to minimize the waste of water, acting mainly in the water supply systems, which have the highest loss rates of this liquid. In this way, the objective is to determine the volume of water (1000m³/year) wasted in SAA (Water Supply System), based on the amount of water produced and consumed in the North and Central-West region of Brazil and, from this, compare the losses in those regions, for the year 2015. Based on the analysis of the datas, it was verified that the water supply in the North and Central-West regions presented high losses rates, 43% and 37%, respectively. Actions such as maintenance of sanitary fittings and elimination of leaks in the residence, more efficient operation and maintenance of the system and improvement in the commercial management of service providers, are measures to combat and reduce water losses.


Sign in / Sign up

Export Citation Format

Share Document