Effect of several natural water constituents on bromate formation during ozonation

2002 ◽  
Vol 2 (5-6) ◽  
pp. 501-507
Author(s):  
R. Hofmann ◽  
S. Larcher ◽  
R. Andrews

Synthetic water matrices containing ammonia, bicarbonate, hydrogen peroxide, and natural organic matter were studied to identify the effects of these compounds (individually and in combination) on bromate formation. Ammonia alone was observed to significantly reduce bromate formation through the sequestering of brominated intermediates as bromamines. Natural organic matter reacted quickly with bromamines, which could impair the ability of ammonia to block bromate formation. Bicarbonate was observed to generally promote bromate formation in otherwise pure water, but bicarbonate worked synergistically with ammonia to reduce bromate formation by a greater factor than ammonia alone, due to OH radical scavenging. Experiments showed that hydrogen peroxide lowered the effectiveness of ammonia to block bromate formation.


Author(s):  
Suna Ozden Celik ◽  
Nese Tufekci ◽  
Ismail Koyuncu

Abstract Lab-scale continuous operation of self forming MF and UF dynamic membranes were investigated simultaneously by applying iron oxide as an alternative treatment option in those waters having natural organic matter (NOM), iron and manganese. Both dynamic membranes gave high removal rates and effluent concentrations of pollutants were below the limit values in synthetic water. 60–62% of DOC and 75–78% of UV254 were removed in low DOC synthetic water (LS) by MF and UF dynamic membranes, respectively. Although only 42–49% of DOC and 48–53% of UV254 could be removed by MF and UF dynamic membranes, remarkable effect on fouling alleviation was observed in high DOC synthetic water (HS). Iron oxide did not enhance the removal of organic matter in low DOC natural water (LN) as much as it did in synthetic water. Iron oxide led to the removal of high molecular weight organics, thus reversible fouling reduced almost 2 orders of magnitude through both types of dynamic membranes in high DOC natural water (HN). Reversible and ireversibe resistances were reduced by iron oxide to some extent in LN. Nevertheless the effect of iron oxide on fouling alleviation was much higher in HN than LN.



1999 ◽  
Vol 40 (9) ◽  
pp. 113-120 ◽  
Author(s):  
A. Maartens ◽  
P. Swart ◽  
E. P. Jacobs

Organic matter in natural brown water as well as humic acids from a commercial sample were characterised by ultraviolet-visible light-spectroscopy and used in ultrafiltration studies. During ultrafiltration the pure-water flux and the operational flux were measured continuously to determine the degree of membrane fouling. The natural organic matter and commercial humic acid concentrations of the feed and permeate solutions were determined spectrophotometrically. These variables were used in conjunction with conventional flux measurements, to determine the colour-removal efficiency of ultrafiltration as well as the degree of foulant adsorption onto the membranes. Fouled membranes were cleaned with alkaline chemical agents normally used to extract natural organic matter from soil samples. The cleaning efficiency and the effect of cleaning solutions on the membrane selectivity were studied.



2011 ◽  
Vol 75 (15) ◽  
pp. 4310-4320 ◽  
Author(s):  
Shikha Garg ◽  
Andrew L. Rose ◽  
T. David Waite


2018 ◽  
Author(s):  
Isabela Carreira Constantino ◽  
Amanda Maria Tadini ◽  
Marcelo Freitas Lima ◽  
Lídia Maria de Almeida Plicas ◽  
Altair Benedito Moreira ◽  
...  

Abstract. Natural organic matter (NOM) is an important component for understanding the behavior of pollutants in the environment. A fraction of NOM is considered labile, fresh and less oxidized. In this work, a simple method was developed to distinguish between labile (LOM) and recalcitrant (ROM) organic matter in freshwater samples. Pyruvate, lignin and fulvic acid were chosen as model compounds of labile and recalcitrant NOM. The samples were submitted to kinetic monitoring experiments using hydrogen peroxide. Pyruvate was the best standard for the quantification of LOM (for concetrations up to 2.9 mg L−1). ROM was quantified by measuring the difference between total organic carbon (TOC) and LOM concentrations. Curves obtained with 0.5 to 5.0 mg L−1 TOC (pyruvate) in freshwater or ultrapure water samples did not indicate the existence of a matrix effect. This simple method was applied to water samples that were collected monthly for one year; the resulting LOM concentrations ranged from 0.47 to 2.1 mg L−1 and the ROM concentrations ranged from 0.08 to 3.5 mg L−1. Based on this results we concluded that hydrogen peroxide kinetics can be used as a simple method to quantify LOM and ROM concentrations in freshwater samples.



2015 ◽  
Vol 17 (8) ◽  
pp. 1455-1461 ◽  
Author(s):  
Hua Ma ◽  
Jie Zhang ◽  
Liyin Tong ◽  
Jixiang Yang

The ability of decomposition organic matter from three natural algicides (barley, rice, and wheat straw) and natural organic matter (NOM) isolates to generate hydrogen peroxide under simulated solar irradiation was evaluated in order to understand the mechanism of indirect algae inhibition through a photochemical pathway.





2014 ◽  
Vol 16 (4) ◽  
pp. 764-769 ◽  
Author(s):  
J. E. Donham ◽  
E. J. Rosenfeldt ◽  
K. R. Wigginton

Hydroxyl radical (˙OH) scavenging reaction rate constants of standard natural organic matter (NOM) isolates (k˙OH,NOM) were measured with a rapid background scavenging method.





Sign in / Sign up

Export Citation Format

Share Document