Structure and function of slow release organic carbon source in groundwater in-situ denitrification

2006 ◽  
Vol 6 (3) ◽  
pp. 105-113 ◽  
Author(s):  
D.Y. Zhang ◽  
G.H. Li ◽  
Y. Wang ◽  
G.Z. Zhou

Many nitrate pollution cases exceed the threshold as recommended by the World Health Organization (50 mg NO3/L) and by the USA (10 mg N/L) for drinking water. In-situ denitrification was regarded as a good method to decrease nitrate contamination but is restricted by carbon absent in groundwater. Considering the disadvantages of known carbon sources, this paper provided slow-release organic carbon-source (SOC) technique to solve the problem and the results showed that SOC materials showed good performance during simulated groundwater denitrification. Structure analysis suggested that hydroxy chemical bond existed between PVA and starch in SOC and surface configuration changed with materials dissolving into water. After seven days of domestication, with 40–50 mg/L initial NO3-N, denitrification efficiency increased from 80.6% to 90.7% and the real COD consumption per N-NO3 reduction was 1.82–3.73 with 2.79 as average. Denitrification process followed the law of zero order kinetics and the parameter of denitrification dynamics, K, was from 0.1366 to 0.1873. It was suggested that SOC was a potential carbon source material (electron donor) suitable for in-situ groundwater denitrification.

2014 ◽  
Vol 36 (7) ◽  
pp. 909-919 ◽  
Author(s):  
Dayi Zhang ◽  
Xu Zhang ◽  
Yun Wang ◽  
Guizhong Zhou ◽  
Guanghe Li

2014 ◽  
Vol 955-959 ◽  
pp. 2285-2289
Author(s):  
Yun Xiao Jin ◽  
Hai Mei Fu

In groundwater, the lack of carbon source is a key problem of in-situ denitrification. It is very important to choose appropriate solid carbon-source materials. In this work, wheatstraw and sawdust were selected as potential carbon sources to evaluate the performance for in-situ biological denitrification in groundwater by column experiments. The results showed that sawdust was a suitable corbon source with less release of nitrogen compounds and relatively stable release of organic carbon, compared with wheatstraw, and was applicable for further use as a filling material in in-situ ground water bioremediation.


2010 ◽  
Vol 61 (11) ◽  
pp. 2951-2956 ◽  
Author(s):  
L. Racz ◽  
T. Datta ◽  
R. K. Goel

This study investigated the effect of organic carbon source on ammonia oxidizing community in single sludge laboratory scale sequencing batch reactors (SBR). Two sequencing batch reactors performing simultaneous carbon oxidation and nitrification were operated. Operationally and functionally, these two reactors were identical, except that one reactor was fed peptone and sodium acetate, and the other was fed glucose and sodium acetate as external organic carbon sources. The peptone-fed reactor had 98.1±1.84% COD removal and 97.3±6.69% NH3-N oxidation. The glucose-fed reactor had 99.1±1.29% COD removal and 99.4±0.76% NH3-N oxidation. The reactor fed with peptone, a complex organic carbon source comprised of enzymatic digests of animal proteins, had greater diversity in both the heterotrophic bacterial community and the ammonia oxidizing bacteria community than in the reactor fed with glucose, a simple sugar as evidenced by automated ribosomal intergenic spacer analysis (ARISA) and terminal restriction fragment length polymorphism (TRFLP) experiments respectively.


2013 ◽  
Vol 658 ◽  
pp. 217-222
Author(s):  
Fan Yang ◽  
He Li Wang

Four kinds of slow-release carbon source composite materials were prepared and used as carbon source and biofilm attachment carrier for groundwater nitrate pollution bioremediation. Their performances were detected through static and continuous experiments. The results showed that: In the static experiments, HB20 and HB40 had general release carbon ability, their CODMn were 5.42 and 12.83 mg/L respectively; In the continuous experiments, NO3-N removal rate of HLE decreased from 57.9% to 13.1% within 30 days, the denitrification endurance was not good. Organic carbon source can be released continuously by HBE which had the best denitrifying effect. In the operation of 66 days, above 96.0% NO3-N was removed and NO2-N level was below 0.02mg/L when influent NO3-N =30.0mg/L and HRT=24h. HBE was the most suitable carbon source carrier material which was used in groundwater nitrate pollution bioremediation.


2013 ◽  
Vol 295-298 ◽  
pp. 1075-1078
Author(s):  
Jian Mei Zhang ◽  
Chuan Ping Feng ◽  
Si Qi Hong

As the lack of carbon source is a key problem of in-situ denitrification in groundwater, choosing appropriate solid carbon source materials is very important. In this study, wheatstraw and sawdust were selected as potential carbon sources to evaluate the performance for in-situ biological denitrification in groundwater by three laboratory-scale column experiments operated at a flow rate of 2.0 cm3/min for 78 d. The results showed that sawdust was a suitable carbon source with less release of nitrogen compounds and relatively stable release of organic carbon, compared with wheatstraw, and was applicable for further use as a filling material in in-situ groundwater bioremediation.


Aquaculture ◽  
2021 ◽  
pp. 736669
Author(s):  
Rildo José Vasconcelos de Andrade Brazil ◽  
Elizabeth Pereira dos Santos ◽  
Gisely Karla de Almeida Costa ◽  
Clarissa Vilela Figueiredo Campos ◽  
Suzianny Maria Bezerra Cabral da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document