scholarly journals Experimental study of the effect of nanoscale zero-valent iron injected on the permeability of saturated porous media

Author(s):  
Jie Tang ◽  
Fei Liu ◽  
Chong Zhang ◽  
Qiang Xue

Abstract In comparison of modified nanoscale zero-valent iron (NZVI), bare NZVI used to remediate deep contaminated groundwater source areas has more advantages. However, the influences of injected bare NZVI deposition on the permeability of aquifer remain unclear, which are still the key factors of engineering cost and contamination removal. Hence, this study sought to assess method of measuring hydraulic conductivity with constant head device and examine the permeability loss mechanism of NZVI injected into different saturated porous media, using column tests. The results showed that it was feasible to determine hydraulic conductivity by the constant head device. The permeability loss caused by NZVI injection increased with a decrease in grain size of porous media, and was determined by the amount and distribution of NZVI deposition. NZVI distribution area had a good linear correlation with dispersivity of the porous media. Additionally, although surface clogging occurred in all porous media, the amount of NZVI deposition at the injection point in fine sand was largest, so that its permeability loss was the most, which was more likely to cause hydraulic fracturing and then expand the area of contaminant source zone. These results have implications for NZVI field injection to successful groundwater remediation.

2015 ◽  
Vol 72 (9) ◽  
pp. 1463-1471 ◽  
Author(s):  
Hui Li ◽  
Yong-sheng Zhao ◽  
Zhan-tao Han ◽  
Mei Hong

The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.


2014 ◽  
Vol 164 ◽  
pp. 25-34 ◽  
Author(s):  
Jan Busch ◽  
Tobias Meißner ◽  
Annegret Potthoff ◽  
Sascha E. Oswald

2014 ◽  
Vol 49 (14) ◽  
pp. 1639-1652 ◽  
Author(s):  
Yan Su ◽  
Yong S. Zhao ◽  
Lu L. Li ◽  
Chuan Y. Qin ◽  
Fan Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document