Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media

2020 ◽  
Vol 234 ◽  
pp. 103677
Author(s):  
Obai Mohammed ◽  
Kevin G. Mumford ◽  
Brent E. Sleep
2015 ◽  
Vol 72 (9) ◽  
pp. 1463-1471 ◽  
Author(s):  
Hui Li ◽  
Yong-sheng Zhao ◽  
Zhan-tao Han ◽  
Mei Hong

The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.


2014 ◽  
Vol 49 (14) ◽  
pp. 1639-1652 ◽  
Author(s):  
Yan Su ◽  
Yong S. Zhao ◽  
Lu L. Li ◽  
Chuan Y. Qin ◽  
Fan Wu ◽  
...  

2013 ◽  
Vol 68 (10) ◽  
pp. 2287-2293 ◽  
Author(s):  
Cai-jie Wei ◽  
Xiao-yan Li

A novel thermal deposition method was developed to coat Ca(OH)2 on the surface of nanoscale zero-valent iron (nZVI). The nZVI particles with the Ca(OH)2 coating layer, nZVI/Ca(OH)2, had a clear core-shell structure based on the transmission electron microscopy observations, and the Ca(OH)2 shell was identified as an amorphous phase. The Ca(OH)2 coating shell would not only function as an effective protection layer for nZVI but also improve the mobility of nZVI in porous media for its use in environmental decontamination. A 10% Ca/Fe mass ratio was found to result in a proper thickness of the Ca(OH)2 shell on the nZVI surface. Based on the filtration tests in sand columns, the Ca(OH)2-based surface coating could greatly improve the mobility and transport of nZVI particles in porous media. In addition, batch experiments were conducted to evaluate the reactivity of Ca(OH)2-coated nZVI particles for the reduction of Cr(VI) and its removal from water.


2013 ◽  
Vol 139 (9) ◽  
pp. 1206-1212 ◽  
Author(s):  
Yuanzhao Ding ◽  
Bo Liu ◽  
Xin Shen ◽  
Lirong Zhong ◽  
Xiqing Li

2020 ◽  
Vol 42 (9) ◽  
pp. 431-441
Author(s):  
Jeongmin Hong ◽  
Hayeon Yang ◽  
Taeyeon Cha ◽  
Younggyo Seo ◽  
Yuhoon Hwang

Objectives : Levels of organic contaminants in excess of the standard minimum have been detected in many commercial and residential sites, and the severity of soil and groundwater pollution is increasing. In particular, non-aqueous phase liquids (NAPLs) are hydrophobic organic pollutants that do not mix with water and are difficult to remove with existing soil remediation technology. These pollutants slowly dissolve into the groundwater over long periods of time, thus contaminating the groundwater. With the increasing need to remove NAPLs for soil and groundwater remediation, widespread interest has focused on the use of nanoscale zero valent iron (nZVI). However, nZVI has the disadvantage of reduced subsurface mobility. Hence, in the present study, the nZVI surface is modified with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), which has both hydrophilic and hydrophobic groups, to improve the mobility and selectivity of nZVI for the removal of NAPL.Methods : The PVP/VA modified nZVI is synthesized through the reaction of FeSO4・7H2O and NaBH4 in the presence of PVP/VA. To confirm the dispersibility of the prepared material, a precipitation experiment is performed using a visible light spectrometer, and the mobility through a sand-filled column is evaluated. In addition, the variation in particle size and characteristics according to the presence of PVP/VA is examined via transmission electron microscopy. The nitrate reduction ability of nZVI with PVP/VA is also evaluated to reveal changes in reactivity depending upon the degree of dispersion. To confirm the selective mobility towards NAPL, trichloroethylene and dodecane are used to evaluate the mobility with and without PVP/VA. Finally, the ratio of nZVI passing through the sponge layer absorbing dodecane is evaluated to determine the selective mobility towards NAPL in the porous medium.Results and Discussion : Although the dispersibility of the PVP/VA-nZVI is not significantly changed, the particle size is significantly decreased. Both the mobility in porous media and the nitrate reduction rate are improved via PVP/VA modification. The affinity for hydrophobic contaminants and the selective migration of PVP/VA-nZVI towards the NAPL layer are also improved. The high affinity for the NAPL was also shown by the column with NAPL layer.Conclusions : Surface-modification with PVP/VA, which has both hydrophilic and hydrophobic ends, enabled the synthesis of nZVI with a smaller and more uniform particle size, thus providing high mobility in porous media and high reactivity towards contaminants. The combined hydrophilicity and hydrophobicity of PVP/VA is shown to increase the affinity of nZVI towards NAPL and, thus, promote its migration to the NAPL layer. Thus, it is anticipated that the efficiency of soil remediation can be improved by promoting the movement of nZVI towards the target NAPL layer.


Sign in / Sign up

Export Citation Format

Share Document