input concentration
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Bahram Roshan ◽  
Hassan Rasoulzadeh ◽  
Mohamadreza Massoudinejad ◽  
Mohsen Saadani ◽  
Daryoush Sanaei

Abstract Flow-through capacitive deionization (FTCDI) is a traditional improved flow-by CDI cellular structure, used to remove ions from aqueous solutions. In this study, a new FTCDI was designed consisting of mesh electrodes (ME) containing ion-exchange membranes (IEM) and aerogel carbon granules with a specific surface area of 489 m2/g. All analyses and experiments performed showed that the new design can remove nitrate, phosphate, sodium, calcium, and chloride. Under optimal conditions, the new FTCDI system can remove 82.5, 49, 85, and 90% of sodium chloride, calcium chloride, nitrate, and phosphate with a maximum input concentration of 450 mg/L, 450 mg/L, 70 mg/L, and 3 mg/L, respectively. The efficiency of this system was also evaluated for real samples. Findings of the study showed that if the initial amount of turbidity is 12 NTU, total soluble solids (TDS) 1,700 mg/L, total hardness 540 mg/L, phosphate 0.09 mg/L, nitrate 28.8 mg/L, and electrical conductivity (EC) 3,480 μs/cm, the system can remove 25, 23.5, 33.3, 66.6, 54.4, and 39.1%, respectively.


2021 ◽  
Author(s):  
Juan A Bonachela ◽  
Melinda Choua ◽  
Michael H Heath

Viruses play critical roles in the dynamics of microbial communities. Lytic viruses, for example, kill significant proportions of autotrophic and heterotrophic microbes. The dynamic interplay between viruses and microbes results from an overlap of physiological, ecological, and evolutionary responses: environmental changes trigger host physiological changes, affecting the ecological interactions of host and virus and, ultimately, the evolutionary pressures influencing the two populations. Recent theoretical work studied how the dependence of viral traits on host physiology (viral plasticity) affects the evolutionarily stable host cell size and viral infection time emerging from coevolution. Here, we broaden the scope of the framework to consider any coevolutionary outcome, including potential evolutionary collapses of the system. We used the case study of Escherichia coli and T-like viruses under chemostat conditions, but the framework can be adapted to any microbe-virus system. Oligotrophic conditions led to smaller, lower-quality but more abundant hosts, and infections that were longer but produced a reduced viral offspring. Conversely, eutrophic conditions resulted in fewer but larger higher-quality hosts, and shorter but more productive infections. The virus influenced host evolution decreasing host radius more noticeably for low than for high dilution rates, and for high than for low nutrient input concentration. For low dilution rates, the emergent infection time minimized host need/use, but higher dilution led to an opportunistic strategy that shortened the duration of infections. System collapses driven by evolution resulted from host failure to adapt quickly enough to the evolving virus. Our results contribute to understanding the eco-evolutionary dynamics of microbes and virus, and to improving the predictability of current models for host-virus interactions. The large quantitative and qualitative differences observed with respect to a classic description (in which viral traits are assumed to be constant) highlights the importance of including viral plasticity in theories describing short- and long-term host-virus dynamics.


Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 229
Author(s):  
Germán Eduardo Dévora-Isiordia ◽  
Alejandra Ayala-Espinoza ◽  
Luis Alberto Lares-Rangel ◽  
María Isela Encinas-Guzmán ◽  
Reyna Guadalupe Sánchez-Duarte ◽  
...  

A high percentage of the agricultural wells in the state of Sonora are overexploited, thus generating a significant degree of saline intrusion and abandonment by nearby communities. In this paper, the effect of temperature on the final concentration of diluted water was evaluated with variations in voltage and input concentration in a batch electrodialysis reversal (EDR) process in order to find the optimal operating conditions, with an emphasis on reducing the energy consumption and cost of desalinated water. Thirty-six samples were prepared: eighteen samples of 2000 mg/L total dissolved solids (TDS) and eighteen samples of 5000 mg/L TDS; brackish well water of 639 mg/L TDS and synthetic salt were mixed to obtain these concentrations. Three different temperatures (25, 30, and 35 °C) and two different voltages (10 and 20 V) were tested for each sample after evaluating the limiting current density. The best salt removal occurred in the 20 V sets, with 18.34% higher removal for the 2000 mg/L TDS experiments and 25.05% for the 5000 mg/L experiments (average between the 25 to 35 °C tests). The temperature positively affected the EDR, especially in the experiments at 10 V, where increasing by 10 °C increased the efficiency by 10.83% and 24.69% for 2000 and 5000 mg/L TDS, respectively. The energy consumption was lower with increasing temperature (35 °C), as it decreased by 1.405% and 1.613% for the 2000 and 5000 mg/L TDS concentrations, respectively (average between the 10 and 20 V tests), thus decreasing the cost per m3 of water.


2021 ◽  
Vol 56 ◽  
pp. 57-65
Author(s):  
Morgan Tranter ◽  
Maria Wetzel ◽  
Marco De Lucia ◽  
Michael Kühn

Abstract. Barite formation is of concern for many utilisations of the geological subsurface, ranging from oil and gas extraction to geothermal reservoirs. It also acts as a scavenger mineral for the retention of radium within nuclear waste repositories. The impact of its precipitation on flow properties has been shown to vary by many orders of magnitude, emphasising the need for robust prediction models. An experimental flow-through column setup on the laboratory scale investigating the replacement of celestite (SrSO4) with barite (BaSO4) for various input barium concentrations was taken as a basis for modelling. We provide here a comprehensive, geochemical modelling approach to simulate the experiments. Celestite dissolution kinetics, as well as subsequent barite nucleation and crystal growth were identified as the most relevant reactive processes, which were included explicitly in the coupling. A digital rock representation of the granular sample was used to derive the initial inner surface area. Medium (10 mM) and high (100 mM) barium input concentration resulted in a comparably strong initial surge of barite nuclei formation, followed by continuous grain overgrowth and finally passivation of celestite. At lower input concentrations (1 mM), nuclei formation was significantly less, resulting in fewer but larger barite crystals and a slow moving reaction front with complete mineral replacement. The modelled mole fractions of the solid phase and effluent chemistry match well with previous experimental results. The improvement compared to models using empirical relationships is that no a-priori knowledge on prevailing supersaturations in the system is needed. For subsurface applications utilising reservoirs or reactive barriers, where barite precipitation plays a role, the developed geochemical model is of great benefit as only solute concentrations are needed as input for quantified prediction of alterations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ingeborg Bussmann ◽  
Holger Brix ◽  
Götz Flöser ◽  
Uta Ködel ◽  
Philipp Fischer

Although methane is a widely studied greenhouse gas, uncertainties remain with respect to the factors controlling its distribution and diffusive flux into the atmosphere, especially in highly dynamic coastal waters. In the southern North Sea, the Elbe and Weser rivers are two major tributaries contributing to the overall methane budget of the southern German Bight. In June 2019, we continuously measured methane and basic hydrographic parameters at a high temporal and spatial resolution (one measurement per minute every 200–300 m) on a transect between Cuxhaven and Helgoland. These measurements revealed that the overall driver of the coastal methane distribution is the dilution of riverine methane-rich water with methane-poor marine water. For both the Elbe and Weser, we determined an input concentration of 40–50 nmol/L compared to only 5 nmol/L in the marine area. Accordingly, we observed a comparatively steady dilution pattern of methane concentration toward the marine realm. Moreover, small-scale anomalous patterns with unexpectedly higher dissolved methane concentrations were discovered at certain sites and times. These patterns were associated with the highly significant correlations of methane with oxygen or turbidity. However, these local anomalies were not consistent over time (days, months). The calculated diffusive methane flux from the water into the atmosphere revealed local values approximately 3.5 times higher than background values (median of 36 and 128 μmol m–2 d–1). We evaluate that this occurred because of a combination of increasing wind speed and increasing methane concentration at those times and locations. Hence, our results demonstrate that improved temporal and spatial resolution of methane measurements can provide a more accurate estimation and, consequently, a more functional understanding of the temporal and spatial dynamics of the coastal methane flux.


Author(s):  
K.S.G.V. Manikrishna* ◽  
◽  
Veluru Sridevi ◽  
Sri Himaja Pamu ◽  
M.Tukaram Bai ◽  
...  

In recent years, the remediation of hazardous organic dye-contaminated aquatic habitats has been a key research priority for environmental and chemical engineers. The goal of this research was to see how well malachite green adsorbs from waste water in a continuous column system having fixed bed. A biosorbent made from waste materials such as hen feathers has been shown to extract the water-soluble malachite green colour from waste water. The adsorption potential of malachite green dye ions in a continuous flow adsorption column is investigated in this work. The hen feathers' performance in the fixed bed column was assessed under a variety of operating circumstances, including bed height in the range 6-10cm; flow in the range 4-12ml/min, and starting concentration (10-30 mg/l). In comparison to other testing settings, the bed height (8cm), flowrate (12ml/min), and maximum input concentration (20mg/l) resulted in the highest malachite green absorption of 2.829mg/g. The column experimental data collected under various conditions was evaluated using three distinct models namely 1. Bohart-Adams model, 2 Yoon-Nelsons model, and 3 BDST model, all of which produced a decent estimation of the breakthrough curve. The findings from the Yoon-nelson and BDST models, on the other hand, were more favourable. The several characteristics of the hen feathers were studied using FTIR studies. The activated hen feather powder was a successful potential bio sorbent for the malachite green from aqueous phase.


2021 ◽  
Vol 11 (15) ◽  
pp. 6988
Author(s):  
Carlos Alfonso Zafra-Mejía ◽  
Daniel Alberto Zuluaga-Astudillo ◽  
Hugo Alexander Rondón-Quintana

Leachate has been reported as the most significant source of landfill pollution. Predicting the characteristics of untreated and treated leachate may be useful during optimal scheduling of leachate treatment systems. The objective of this paper is to show an analysis of the operation of a landfill leachate treatment system in a Latin American megacity (Bogota, Colombia) by means of auto-regressive integrated moving average (ARIMA) models. A comparative analysis of the leachate treated with respect to reference legislation is carried out. The influence of climate variables during the operation of the treatment system is also considered. The results suggest that the concentrations of heavy metals (HMs), BOD5, and COD in untreated leachate do not follow the same annual cycles observed for the quantity of solid waste disposed within the landfill. This difference is possibly associated with the hydraulic retention time (HRT) of the leachate inside the conduction and pre-treatment system (storage/homogenization ponds). The ARIMA analysis suggests an HRT of up to one month (AR = 1) for the HMs identified as indicators of untreated leachate (Cu, Pb, and Zn). It is noted that the removal efficiency of HM indicators of the operation of the leachate treatment plant (Fe and Ni) is probably conditioned by operations carried out over a period of one month (AR = 1). The high input concentration of these HM indicators may prevent changing their ARIMA temporal structure during leachate treatment. This is reflected in the low removal efficiencies for all HMs under study (average = 26.1%).


2021 ◽  
Vol 8 ◽  
Author(s):  
Shan Jiang ◽  
Jie Jin ◽  
Ying Wu ◽  
Yixue Zhang ◽  
Yongjun Wei ◽  
...  

Supply of bio-labile dissolved organic matter (DOM) has been assumed to be a key factor for the intensity of nitrate (NO3–) removal in permeable coastal sediments. In the present study, a series of flow through reactor experiments were conducted using glucose as a N-free bio-labile DOM source to permeable sediments from a sandy beach seepage face to identify its effect on benthic NO3– removal. The results revealed a shift from the dominance of NO3– production to removal processes when NO3– input concentration increased from 10 to 80 μM under oxic conditions. Sediment microbiota information suggests that nitrification (e.g., Nitrosomonas and Nitrososphaera) and denitrification (e.g., Marinobacter and Bacillus) were dominant pathways for benthic NO3– production and removal in the studied sediment. Compared with the active response of sediment microbiota to NO3– additions, the supply of glucose (approximately 300 μM final concentration added) did not significantly change the NO3– removal efficiency under aerobic conditions (dissolved oxygen saturation approximately 100%). Similarly, an insignificant increase of NO3– removal rate after glucose amendment of the circulating water was obtained when dissolved oxygen (DO) saturation decreased to approximately 70% in the input solution. When DO at the input solution was decreased to 30% saturation (sub-oxic conditions), the removal rate of NO3– in the group amended with glucose increased, suggesting that glucose stimulated denitrifiers. These results revealed that NO3– removal relied mainly on the anaerobic environment at particle surfaces, with a dependence on the sedimentary organic matter as an electron supplier under bulk aerobic conditions, while the bio-labile DOM was consumed mainly by aerobic respiration instead of stimulating NO3– reduction. However, the respiration triggered by the over-supply of bio-labile DOM reduced the DO in the porewater, likely depressing the activity of aerobic reactions in the permeable sediment. At this point, the benthic microbiota, especially potential denitrifiers, shifted to anaerobic reactions as the key to support nitrogen metabolism. The glucose amendment benefited NO3– reduction at this point, under sub-oxic conditions.


2021 ◽  
Vol 8 ◽  
pp. 6-10
Author(s):  
N. Jamshidi ◽  
M.T. Jafarzadeh ◽  
A. Khoshgard ◽  
L. Talebiazar ◽  
R. Aslaniavali

In this study, advanced oxidation processes (UV, UV/H2O2, UV/H2O2/Fe(II) and UV/H2O2/Fe(III)) were investigated in lab-scale experiments for degradation of phenol sulfonic acid (PSA) in aqueous solution. The study showed that the UV/H2O2 process has removal percentage 90.9, 93.0 and 94.4 for neutral, basic and acidic conditions in 20 minutes respectively. The experimental results showed that the optimum conditions were obtained at a pH value of 3, with 4 mmol/1 H2O2, and 0.25 mmol/1 Fe(II) for the UV/H2O2/Fe(II) system and 6 mmol/l H2O2 and, 0.4 mmol/1 Fe(III) for the UV/H2O2/Fe(III) system. The reaction was influenced by the pH, the input concentration of H2O2 and the amount of the iron catalyst and the type of iron salt. As for the UV processes, UV/H2O2 showed the highest degradation rate under acidic conditions


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Giovanna De Filippis ◽  
Laura Ercoli ◽  
Rudy Rossetto

Nitrogen-nitrate, while being fundamental for crop production, is of particular concern in the agricultural sector, as it can easily leach to the water table, worsening groundwater quality. Numerical models and Geographic Information System may support the estimation of nitrate leaching rates in space and time, to support sustainable agricultural management practices. In this paper, we present a module for the simulation of the processes involved in the nitrogen cycle in the unsaturated zone, including nitrate leaching. This module was developed taking steps from the ANIMO and EPIC model frameworks and coupled to the hydrological models integrated within the FREEWAT platform. As such, the nitrogen cycle module was then included in the FREEWAT platform. The developed module and the coupling approach were tested using a simple synthetic application, where we simulated nitrate leaching through the unsaturated zone for a sunflower crop irrigated district during a dry year. The results of the simulation allow the estimation of daily nitrate concentration values at the water table. These spatially distributed values may then be further used as input concentration in models for simulating solute transport in aquifers.


Sign in / Sign up

Export Citation Format

Share Document