Introduction of Deep Oxic/Anoxic Tanks at Hendriksdal Sewage Treatment Plant to Increase the Capacity

1991 ◽  
Vol 23 (10-12) ◽  
pp. 1783-1792 ◽  
Author(s):  
J. Hultgren ◽  
I. Möllersten ◽  
L.-G. Reinius

The requirements for purification of sewage will be more stringent in Sweden in the future. For Henriksdal sewage treatment plant situated in rock, the proposed limit concentrations for BOD7, total phosphorus and total nitrogen are 10, 0.3 and 14 mg/l respectively as an average over the year. For nitrogen removal in the plant, the volumes of the biological stage have to be increased from about 70 000 m3 today to about 200 000 m3 in the future. There is space available in the rock for only a few new aeration and sedimentation tanks. To achieve adequate volumes, the aeration tanks must be deepened from 5 to 12 m. This paper provides a brief information about the ideas for extension, the investigations on pilot plant scale with operation of deep aeration tanks and the design of the future plant.

1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


2013 ◽  
Vol 67 (10) ◽  
pp. 2273-2280 ◽  
Author(s):  
Y. Dai ◽  
A. Constantinou ◽  
P. Griffiths

The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3−-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.


1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 77-84
Author(s):  
J. Hultgren ◽  
L.-G. Reinius ◽  
M. Tendaj

The purification requirements for the Stockholm sewage treatment plants will become more stringent in the future. The expected limit values for the effluent, expressed as annual mean values, are for BOD7, Tot-P, and Tot-N, 10, 0.3 and 15 mg/l respectively. If these contents are multiplied by the design flow values for the three plants, we obtain the maximum quantities which may be released. If the relevant authorities permit the municipality to distribute these total quantities as desired between the three plants, future necessary extensions can be optimized. The following main principles apply to an extension of the three plants: Loudden sewage treatment plant: This comparatively small treatment plant could, if the requirements are lower than in the other two plants, continue in operation with no other extensions than the inclusion of anoxic zones. It would, however, be necessary to refurbish the plant after a number of years of neglected maintenance. Bromma sewage treatment plant: The biological stage was extended during the 1982-84 period. For this reason, the municipality suggests that no further extensions of the aeration tanks be required, before 1995 at the earliest. A nitrogen removal with outgoing contents of Tot-N of 15-17 mg/l is expected to be achieved by measures taken to reduce the load on the biological stage instead. These measures consist of centrifuging the excess sludge and pumping it directly to the digesters instead of returning it to the inlet. Furthermore, separate treatment of the reject water from the sludge centrifuges is planned. A third measure could be changing over to a more efficient precipitation chemical to permit a further reduction of the load on the biological stage with regard to, inter alia, BOD7, Tot-N etc. To meet the requirements for phosphorus removal (0.3 mg/l), the plant will be extended with a filter stage after the existing biological stage. Henriksdal sewage treatment plant: At this plant, which is the largest of the three, the largest extensions are planned. To meet the requirements for nitrogen removal, the present volumes in the aeration tanks will be tripled and will be utilized as anoxic and aerated zones as required. Three new lines with aeration tanks and secondary sedimentation tanks will be constructed. The existing aeration tanks will also be deepened from 5 to 12 m. The requirements for low phosphorus contents in the effluent will be met by installing a filter stage, as in the Bromma plant.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
B. Andersson

A test program for the use of fixed bed processes in systems for nitrogen removal at an advanced sewage treatment plant is described. Results from studies on nitrification in a full scale trickling filter plant with different filter depths and at different wastewater temperatures are presented. Results from full scale experiments with denitrification/nitrification in a retrofitted activated sludge plant are also presented. The effect of an aerated submerged fixed bed in the aeration basin on nitrification was investigated. Observations of the biofilm formed on the fixed bed were made in microscope.


1997 ◽  
Vol 36 (12) ◽  
pp. 151-158 ◽  
Author(s):  
Youngno Kim ◽  
Kazuhiro Mikawa ◽  
Toshiaki Saito ◽  
Kazuhiro Tanaka ◽  
Hiroyoshi Emori

In Japan, priority of sewage works implementation has gradually been given to smaller communities. Sewage treatment processes for small communities must meet several requirements such as low construction and O-M cost, easy O-M, stable performance, and in some locations nitrogen and/or phosphorus removal as well as BOD and SS removal. With a view to achieving these requirements, the authors have been developing a novel anaerobic/aerobic filter process for simultaneous removal of BOD, SS and nitrogen. In this process, an upflow anaerobic filter is followed by a nitrification tank using entrapped immobilized nitrifier pellets and an aerobic filter for the polishing process. In order to demonstrate this novel process in the field, a pilot plant with a capacity of 1.75 m3/d was installed in an existing sewage treatment plant near Tokyo in January, 1996. The target effluent qualities are BOD and T-N less than 10 mg/l respectively and SS less than 5 mg/l. The pilot plant study has shown that the overall treatment performance of 96∼97% in SS and BOD removal and 74∼75% in T-N removal has been stably obtained under the conditions of 5.5h in total retention time, recycling ratio of 3, and 25 to 250% in load variation.


Sign in / Sign up

Export Citation Format

Share Document