Tentative Nitrogen Removal with Fixed Bed Processes in Malmö Sewage Treatment Plant

1990 ◽  
Vol 22 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
B. Andersson

A test program for the use of fixed bed processes in systems for nitrogen removal at an advanced sewage treatment plant is described. Results from studies on nitrification in a full scale trickling filter plant with different filter depths and at different wastewater temperatures are presented. Results from full scale experiments with denitrification/nitrification in a retrofitted activated sludge plant are also presented. The effect of an aerated submerged fixed bed in the aeration basin on nitrification was investigated. Observations of the biofilm formed on the fixed bed were made in microscope.

2013 ◽  
Vol 67 (10) ◽  
pp. 2273-2280 ◽  
Author(s):  
Y. Dai ◽  
A. Constantinou ◽  
P. Griffiths

The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3−-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.


1996 ◽  
Vol 33 (12) ◽  
pp. 147-153
Author(s):  
M. Rothman ◽  
J. Hultgren

Bromma sewage treatment plant (STP) is one of three plants in Stockholm. To meet more stringent requirements for nutrient removal the plant has been extended with a final filtration stage. Earlier it has not been possible to operate the plant with nitrification during winter time. Bad settling properties of the activated sludge have led to bulking sludge and high concentrations of BOD and phosphorus in the effluent. With the filter stage it is now possible to reduce the load on the biological stage by by-passing part of the flow directly to the filters. The result has been very promising and it seems that the plant can meet the new demands for nitrogen removal without extension of the aerated volumes.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 527
Author(s):  
Mengmeng Liu ◽  
Meixue Chen ◽  
Rong Qi ◽  
Dawei Yu ◽  
Min Yang ◽  
...  

Aiming at providing cost-effective approach for upgrading the existing municipal wastewater treatment plants in the cold region of China to meet more stringent discharge standards of nitrogen removal, a full-scale sewage treatment plant with the CASS process was selected through focusing on biological process, key equipment and hydrodynamics in bioreactors by the activated sludge model 1 (ASM1) and computational fluid dynamics (CFD) model. Influent COD fractions and the key characteristic parameters (YH and bH) of the activated sludge were determined through the respirometry at temperatures of 10 °C and 20 °C, respectively. The layout of submerged agitator installation in the bioreactor of the CASS process was optimized through CFD simulation. The calculation of the average relative deviation (less than 20%) between simulated data and the operation data, demonstrated that the ASM1 model could be reasonably used in the wastewater treatment plant simulation. The upgrade solution based on modelling of ASM1 and CFD was successfully applied in practice, which not only made the effluent COD, NH4+-N and TN concentrations meet with the discharge standard of Grade I-A, but also reduced the energy consumption by 25% and 16.67% in summer and winter, respectively. After upgrading, microbial diversity increased in both summer and winter, with an especially significant increase of the relative abundance of denitrifying bacteria.


1996 ◽  
Vol 33 (1) ◽  
pp. 89-99 ◽  
Author(s):  
F. Göhle ◽  
A. Finnson ◽  
B. Hultman

Bromma sewage treatment plant in Stockholm is the second largest plant in Stockholm and will in the near future have requirements for nitrogen removal. This means that a higher sludge age must be used in the aeration basin. This may be accomplished by an increase of the sludge concentration up to values until the limiting solids flux is exceeded. Measurement of the sludge blanket level is a possibility for better control of the sedimentation basin. Different measurements were performed to evaluate the main factors influencing the level. Dynamic simulation studies were performed at Bromma sewage treatment plant in Stockholm of the sludge blanket level and the return sludge concentration in a full-scale sedimentation basin. The simulations were performed with the help of a Danish simulation package, EFOR (1992), in which both reactions in the aeration basin (mainly based on the IAWPRC model) and separation processes in the sedimentation basin (both clarification and thickening) can be studied. The thickening model is based on the solids flux theory and the Vesilind formula (1979). Different methods were compared for determination and use of characteristic parameters in the Vesilind formula.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0131532 ◽  
Author(s):  
Magna C. Paiva ◽  
Marcelo P. Ávila ◽  
Mariana P. Reis ◽  
Patrícia S. Costa ◽  
Regina M. D. Nardi ◽  
...  

2002 ◽  
Vol 46 (10) ◽  
pp. 173-179 ◽  
Author(s):  
S. Tanaka ◽  
K. Kamiyama

Effects of a thermochemical pretreatment on the anaerobic digestion of waste activated sludge (WAS) was investigated by semicontinuously-fed digesters operated at 37¡C. WAS from a return sludge line of a municipal sewage treatment plant was pretreated by autoclaving at 130°C for 5 minutes after adding 0.3g NaOH/g VSS. Solids of WAS were thermochemically solubilized to one half and then 60% or more were in totality solubilized in anaerobic digesters fed with pretreated WAS at 2-8 days of hydraulic retention times (HRT), while only 16-36% were solubilized in digesters fed with raw WAS. The adverse effect of the set temperature (130°C) on the biodegradability of protein was not found. As a result, removal rates of COD in digestion was increased from 38% to 57% at 8 days HRT by the pretreatment. A specific methane production rate in the pretreated process was three times as high as the normal process. The thermochemical pretreatment was found to be very effective to enhance biodegradability as well as solubilization of WAS in anaerobic digestion.


Sign in / Sign up

Export Citation Format

Share Document