Techniques for Closing the Water Circuits in the Pulp and Paper Industry

1994 ◽  
Vol 29 (5-6) ◽  
pp. 11-18 ◽  
Author(s):  
Howard Edde

The focus of this paper is on the earlier, recent and future developments in closing the water circuits in pulp and paper production. During the 1960s the U.S. pulp and paper industry was in its environmental infancy concentrating mainly on removal of settleable solids and initiating river assimilative capacity studies. The 1970s began with environmental legislation having enforceable powers to achieve primary and secondary (biological) treatment which was fundamentally fulfilled during the 1980s. The late 1980s and early 1990s opened with toxicity becoming the major environmental issue as measured mainly by absorbable organic halogens (AOX) and dioxins. This paper identifies progress and key technological developments towards furthering stringent environmental enhancement and provides additional knowledge requirements leading into the next century.

1988 ◽  
Vol 20 (1) ◽  
pp. 25-36 ◽  
Author(s):  
A. Luonsi ◽  
J. Junna ◽  
I. Nevalainen

The recent development of Finnish pulp and paper industry external wastewater treatment has created positive results by reducing the oxygen consuming load (BOD7) of the recipients. This is due to the thirteen activated sludge plants and one anaerobic reactor which have been constructed during the last four years. The target values set in the form of suspended solids (SS) and BOD7 for 1985 (400 t BOD7/d) are expected to be achieved during 1987. Activated sludge plants have also created negative effects in the form of large amounts of surplus biological sludge and increased nutrient discharges, especially phosphorus which with reduced acute toxicity will increase the eutrophication of discharge areas. The share of activated sludge plants for the increased phosphorus discharges remains to be studied. The rapid increase started before the activated sludge plants started operation. In well operated activated sludge plant nutrient discharge is not increased. Although the specific water consumption and specific organic loads continuously decrease in pulp and paper production the increased production and more stringent requirements for pollution control prerequisite investments for external treatment. Therefore it is the time for efficient biological treatment plant construction and before 1995 a good number of mainly activated sludge plants will be constructed, for which time target values and some alternative guidelines to pollution control have been planned but not yet officially issued. Also requirements for CODCr, and total organic chlorine (TOCl) will be among the effluent quality criteria in the near future. When further requirements are issued the basis must be in the requirements of the biota which it is desired to live in the discharge areas. Much research is needed to find out how many of these requirements can be satisfied by modifications of present treatment processes. Thereafter the possibility of removing specific pollutants from the low volume fractions must be identified. The results of these studies must then be compared with the tertiary processes which can be added after the biological treatment plants which process the combined mill effluent. The problem must be regarded as a complex one because any substance removed from the wastewater will be found either in the sludge or in the air. The harmful compounds should be returned to normal ecological circulation or to the least harmful form and location in the most suitable waste stream.


2010 ◽  
Vol 62 (10) ◽  
pp. 2364-2371 ◽  
Author(s):  
M. Sandberg

More than 50% of the electrical power needed to treat pulp and paper industry effluents is used for aeration in biological treatment stages. A large share of the oxygen that passes through the wastewater is not consumed and will be found in the off-gas. Energy can be saved by aerating under conditions where the oxygen transfer is most efficient, for example at low concentrations of dissolved oxygen Consider the sludge as an energy source; electricity can be saved by avoiding sludge reduction through prolonged aeration. High oxygen transfer efficiency can be retained by using the oxygen consumption of biosolids. Quantified savings in the form of needed volumes of air while still achieving sufficient COD reduction are presented. The tests have been made in a bubble column with pulp mill process water and sludge from a biological treatment plant. These were supplemented with case studies at three pulp and paper mills.


Author(s):  
Micaela A. R. Soares ◽  
Manuela Marques ◽  
Maria Teresa Rodrigues

The feasibility of storing wastewater samples from pulp and paper industry during more than 5 days (time recommend by ISO 5667-3:2018) for AOX determination was addresses in this study. Samples were collected before and after the aerobic biological treatment of a Portuguese industry. Experimental protocol included AOX measurements at days 4, 5, 6, 8, 11, 13, 15, 18 and 20 after sampling. Results obtained indicate that storage time is not matrix-dependent and it can be extended up to 20 days, which clearly improves management of laboratory activities concerning AOX determination.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 411-415 ◽  
Author(s):  
J. Wartiovaara ◽  
P. Heinonen

During recent years the BOD-loading of pulp and paper mill wastewaters has decreased dramatically, due to more effective circulation of water in the processes, and the new activated sludge biological treatment plants. This traditional threat to the environment has been forgotten by the scientists who nowadays are more interested in the role of chlorine compounds discharged from bleaching processes. However, eutrophication due to nutrient loading is still present in many recipients of pulp and paper industry. The BOD-reduction has often been carried out on the cost of adding nutrients, pnosphorus and nitrogen to the purification processes. The biological treatment has also decreased the inhibitive effect of wastewater on the biological production of the recipient water body. Therefore, the eutrophication arises immediatly. The authors worry about the research of nutrients; loadings, development trends and eutrophication effects.


Sign in / Sign up

Export Citation Format

Share Document