Optimization of flocculation/flotation in chemical wastewater treatment

1995 ◽  
Vol 31 (3-4) ◽  
pp. 73-82 ◽  
Author(s):  
Hallvard Ødegaard

An experimental investigation on flocculation/flotation for direct chemical treatment of municipal wastewater was carried out. It was demonstrated that flocculation units prior to flotation must be designed and operated differently to those used prior to sedimentation. Recommendations regarding design criteria both for the flocculation unit and the flotation unit are given.

2013 ◽  
Vol 9 (2) ◽  
pp. 166-173

The present study investigated tertiary physico-chemical treatment of the secondary effluent from the Chania municipal Wastewater Treatment Plant (WTP). Laboratory experiments were carried out with the aim of studying coagulation efficiency regarding reduction of turbidity, soluble COD and phosphorus both in a conventional Coagulation-Settling treatment scheme, as well as by means of Contact Filtration. The results showed that high doses of coagulants (0,5 mmol Me+3 l-1 or higher) are required to achieve significant removals of turbidity after settling. At these high doses, soluble COD can be removed by about 50%, while soluble Phosphorus by 80-95%. Ferric Chloride demonstrated slightly better removal ability as compared to Alum. The Chania WTP effluent was also treated by Contact Filtration, using a very low dose of coagulants, 0,1 mmol Me+3 l-1. Turbidity was removed by around 50%, while at this low coagulant dose removals of COD and Phosphorus were insignificant. Filtration was effective in the first 35cm of the filter bed. No significant differences were observed between the coagulants Alum and FeCl3 in the elimination of turbidity. Nevertheless, with the use of Alum a smaller filter headloss was observed, during the first two hours of continuous filtration, in comparison with the use of FeCl3 (nearly double). No difference was observed between the headloss developed at a filter depth of 5cm as compared to that developed at a depth of 70cm. This indicates that the headloss increase was due to the accumulation of suspended and colloidal solids within the first layers of the sand filter.


1987 ◽  
Vol 19 (7) ◽  
pp. 1233-1236
Author(s):  
H. Ødegaard

An experimental investigation on flocculation/flotation for wastewater treatment was performed. It was demonstrated that flocculation units which are before flotation units in treatment trains must be designed and operated differently to those before sedimentation units. Recommendations regarding design criteria for both flocculation and flotation units are given.


1994 ◽  
Vol 29 (4) ◽  
pp. 1-6 ◽  
Author(s):  
Ronald W. Crites

Constructed wetlands are categorized into two types: free water surface flow or subsurface flow. Design criteria are set out for both types and operational details are given for both municipal wastewater treatment plants.


2006 ◽  
Vol 5 (4) ◽  
pp. 685-692
Author(s):  
Elisabeta Chirila ◽  
Ionela Carazeanu Popovici ◽  
Techin Ibadula ◽  
Alice Iordache

2015 ◽  
Vol 4 (0) ◽  
pp. 9781780402925-9781780402925
Author(s):  
H. van der Roest ◽  
D. Lawrence ◽  
A. van Bentem

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


Sign in / Sign up

Export Citation Format

Share Document