Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge

1998 ◽  
Vol 37 (4-5) ◽  
pp. 579-582 ◽  
Author(s):  
Hiroyasu Satoh ◽  
Takashi Mino ◽  
Tomonori Matsuo

Mechanisms of the anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge were investigated. Sludge hydrolysate with hydrochloric acid was analyzed by reverse phase HPLC after pre column derivatization with dabsyl-chloride. The experimental results indicated that glutamate is accumulated as a polymer consisting of γ-aminobutyric acid and an unknown amino acid. On the other hand, aspartate was found to be deaminated and then accumulated as PHA.

2002 ◽  
Vol 46 (1-2) ◽  
pp. 163-170 ◽  
Author(s):  
N. Lee ◽  
J. la Cour Jansen ◽  
H. Aspegren ◽  
M. Henze ◽  
P.H. Nielsen ◽  
...  

The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed in both systems throughout the whole period, with significant increases of the P removal when substrates were dosed. The activated sludge in both systems contained large amounts of dense clusters of gram-negative, methylene-blue staining coccoid rods during the whole period. A large part of the clusters belonged to the β Proteobacteria, whereas the rest of the clusters belonged either to the Actinobacteria or to the α Proteobacteria. The relative abundance of Rhodocyclus-related bacteria in the activated sludge varied significantly in both systems during the whole period (from 6 to 18% in BNP, and from 4 to 28% in BP). However, no statistically significant correlation of the Rhodocyclus-related nor any of the other investigated bacterial groups to the P content of the activated sludge (correlation for all groups investigated was always < 0.5) was observed. A significant 33Pi uptake was observed by the β Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part of the Rhodocyclus-related bacteria, the Actinobacteria and other, yet unidentified bacteria.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 23-41 ◽  
Author(s):  
M. C. Hascoet ◽  
M. Florentz ◽  
P. Granger

Enhanced biological phosphorus removal from wastewater by means of microorganisms found in activated sludge has for the past few years been the subject of much research and it is now commonly recognized that an activated sludge system must include alternating anaerobic-aerobic periods. The present article covers biochemical aspects of this phenomenon using a phosphorus removing biomass obtained in a laboratory-scale pilot with alternating phases and a synthetic substrate feed. The percentage of phosphorus obtained in the pilot sludge was four times greater than that of a conventional sludge plant. By exposing the same biomass to different conditions and using 31P Nuclear Magnetic Resonance, we were able to accurately pin-point the various forms of phosphorus found within cells and follow their development during the course of alternating phases. The following results were obtained:the transformation of phosphorus in its inorganic to polyphosphate form depends on the medium's level of oxygenation,the presence of nitrates disturbs the anaerobic period but does not affect phosphorus uptake in the aerated period.Continuous nitrate addition alters biomass behaviour in the anaerobic phase, which loses the capacity to release phosphorus,copper at a concentration of over 1 mg Cu2+/1 inhibits phosphorus uptake in the aerated phase. Various microbiological analyses made on the pilot biomass isolated conventional bacteria found in activated sludge.


2003 ◽  
Vol 47 (11) ◽  
pp. 115-122 ◽  
Author(s):  
J. Manga ◽  
J. Ferrer ◽  
A. Seco ◽  
F. Garcia-Usach

A mechanistic mathematical model for nutrient and organic matter removal was used to describe the behavior of a nitrification denitrification enhanced biological phosphorus removal (NDEBPR) system. This model was implemented in a user-friendly software DESASS (design and simulation of activated sludge systems). A 484-L pilot plant was operated to verify the model results. The pilot plant was operated for three years over three different sludge ages. The validity of the model was confirmed with data from the pilot plant. Also, the utility of DESASS as a valuable tool for designing NDEBPR systems was confirmed.


Sign in / Sign up

Export Citation Format

Share Document