Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

2002 ◽  
Vol 46 (1-2) ◽  
pp. 163-170 ◽  
Author(s):  
N. Lee ◽  
J. la Cour Jansen ◽  
H. Aspegren ◽  
M. Henze ◽  
P.H. Nielsen ◽  
...  

The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed in both systems throughout the whole period, with significant increases of the P removal when substrates were dosed. The activated sludge in both systems contained large amounts of dense clusters of gram-negative, methylene-blue staining coccoid rods during the whole period. A large part of the clusters belonged to the β Proteobacteria, whereas the rest of the clusters belonged either to the Actinobacteria or to the α Proteobacteria. The relative abundance of Rhodocyclus-related bacteria in the activated sludge varied significantly in both systems during the whole period (from 6 to 18% in BNP, and from 4 to 28% in BP). However, no statistically significant correlation of the Rhodocyclus-related nor any of the other investigated bacterial groups to the P content of the activated sludge (correlation for all groups investigated was always < 0.5) was observed. A significant 33Pi uptake was observed by the β Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part of the Rhodocyclus-related bacteria, the Actinobacteria and other, yet unidentified bacteria.

1998 ◽  
Vol 38 (8-9) ◽  
pp. 69-76 ◽  
Author(s):  
I. M. Sudiana ◽  
T. Mino ◽  
H. Satoh ◽  
T. Matsuo

The microbial communities in activated sludge acclimated with either acetate or glucose as the major carbon source under phosphorus limited or rich conditions were investigated morphologically, phylogenetically and chemotaxonomically. The sludge with a minimized polyphosphate content was dominated by tetrad shaped bacteria, which were suspected to be ‘glycogen accumulating bacteria (GAOs) or G bacteria’ The sludge containing high polyphosphate was dominated by cluster forming coccus bacteria. Quinone analyses suggested that all the sludge tested contained various ubiquinones and menaquinones, of which the ubiquinones Q-8 and Q-10 were dominant. Analyses with rRNA targeted probes showed that beta sub class of Proteobacteria was most predominant in all sludges tested. Morphological, phylogenetic and chemotaxonomic investigation all indicated that both high and low P sludges are microbiologically diverse.


2016 ◽  
Vol 75 (3) ◽  
pp. 741-751 ◽  
Author(s):  
Yeshi Cao ◽  
Bee Hong Kwok ◽  
Mark C. M. van Loosdrecht ◽  
Glen T. Daigger ◽  
Hui Yi Png ◽  
...  

Mainstream partial nitritation and Anammox (PN/A) has been observed and studied in the step-feed activated sludge process at the Changi water reclamation plant (WRP), which is the largest WRP (800,000 m3/d) in Singapore. This paper presents the study results for enhanced biological phosphorus removal (EBPR) co-existing with PN/A in the activated sludge process. Both the in-situ EBPR efficiency and ex-situ activities of phosphorus release and uptake were high. The phosphorus accumulating organisms were dominant, with little presence of glycogen accumulating organisms in the activated sludge. Chemical oxygen demand (COD) mass balance illustrated that the carbon usage for EBPR was the same as that for heterotrophic denitrification, owing to autotrophic PN/A conversions. This much lower carbon demand for nitrogen removal, compared to conventional biological nitrogen removal, made effective EBPR possible. This paper demonstrated for the first time the effective EBPR co-existence with PN/A in the mainstream in a large full-scale activated sludge process, and the feasibility to accommodate EBPR into the mainstream PN/A process. It also shows EBPR can work under warm climates.


2021 ◽  
Author(s):  
Zhihang Yuan ◽  
Da Kang ◽  
Guangyu Li ◽  
Jangho Lee ◽  
IL Han ◽  
...  

AbstractThe enhanced biological phosphorus removal (EBPR) has been widely applied in treating domestic wastewater, while the performance on high-strength P wastewater is less investigated and the feasibility of coupling with short-cut nitrogen removal process remains unknown. This study first achieved the simultaneous high-efficient P removal and stable nitrite accumulation in one sequencing batch reactor for treating the synthetic digested manure wastewater. The average effluent P could be down to 0.8 ± 1.0 mg P/L and the P removal efficiency was 99.5 ± 0.8%. Candidatus Accumulibacter was the dominant polyphosphate accumulating organism (PAO) with the relative abundance of 14.2-33.1% in the reactor. Examination of the micro-diversity of Candidatus Accumulibacter using 16s rRNA gene-based oligotyping analysis revealed one unique Accumulibacter oligotype that different from the conventional system, which accounted for 64.2-87.9% of the total Accumulibacter abundance. The presence of high-abundant glycogen accumulating organisms (GAO) (15.6-40.3%, Defluviicoccus and Candidatus Competibacter) did not deteriorate the EBPR performance. Moreover, nitrite accumulation happened in the system with the effluent nitrite up to 20.4 ± 6.4 mg N/L and the nitrite accumulation ratio was nearly 100% maintained for 140 days (420 cycles). Nitrosomonas was the dominant ammonia-oxidizing bacteria with relative abundance of 0.3-2.4% while nitrite-oxidizing bacteria were almost undetected (<0.1%). The introduction of extended anaerobic phase and high volatile fatty acid concentrations were proposed to be the potential selector forces to promote partial nitrification. This is the first study that combined EBPR with nitrite-accumulation for digested manure wastewater treatment, and it provided new sights in strategies to combine the EBPR and short-cut nitrogen removal via nitrite to achieve simultaneous nitrogen and phosphorus removal.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 101-109 ◽  
Author(s):  
Natuscka M. Lee ◽  
Hans Carlsson ◽  
Henrik Aspegren ◽  
Thomas Welander ◽  
Bengt Andersson

In order to introduce nitrogen removal, many conventional activated sludge systems in Sweden have been transformed into low-loaded systems during the 1990's. Occasionally these systems have been combined with enhanced biological phosphorus removal (EBPR). Increased problems of sludge loss from secondary clarifiers have aroused new interest in the properties of activated sludge. The aim of this study was to investigate the long-term variation and stability of sludge properties in two parallel EBPR systems, operating on the same wastewater. One of the systems was designed as a conventional system, and the other as a low-loaded system with nitrogen removal. The study was performed at the Sjölunda plant in Malmö during a two-year period, in a pilot plant which has been in operation since 1986. The diluted sludge volume index (DSVI) was found to be about 150 ml/g in both systems. The highest values were recorded during the winter season. The variation in the DSVI was much greater in the conventional system than in the low-loaded system. The dominating filamentous bacteria in the conventional system were Type 021N and Thiothrix, and in the low loaded system Type 0041/0675 and Type 0092. The EBPR operation induced large amounts of poly-P-containing flocs in both systems. Although it was not possible to determine to what extent the poly-P-containing flocs affected the sludge properties in this study, it was clearly demonstrated that EBPR operation may not always provide conditions which lead to superior sludge properties.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 567-571 ◽  
Author(s):  
Philip L. Bond ◽  
Jürg Keller ◽  
Linda L. Blackall

A sequencing batch reactor (SBR) was operated for enhanced biological phosphorus removal (EBPR) and dramatic differences in the P removing capabilities were obtained in different stages of the operation. At one stage extremely poor P removal occurred and it appeared that bacteria inhibiting P removal overwhelmed the reactor performance. Changes were made to the reactor operation and these led to the development of a sludge with high P removing capability. This latter sludge was analysed by fluorescent in situ hybridisation (FISH) using a probe specific for Acinetobacter. Very few cells were detected with this probe indicating that Acinetobacter played an insignificant role in the P removal occurring here. Analysis of the chemical transformations of three sludges supported the biochemical pathways proposed for EBPR and non-EBPR systems in biological models. A change in operation that led to the improved P removal performance included permitting the pH to rise in the anaerobic periods of the SBR cycle.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 579-582 ◽  
Author(s):  
Hiroyasu Satoh ◽  
Takashi Mino ◽  
Tomonori Matsuo

Mechanisms of the anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge were investigated. Sludge hydrolysate with hydrochloric acid was analyzed by reverse phase HPLC after pre column derivatization with dabsyl-chloride. The experimental results indicated that glutamate is accumulated as a polymer consisting of γ-aminobutyric acid and an unknown amino acid. On the other hand, aspartate was found to be deaminated and then accumulated as PHA.


1994 ◽  
Vol 29 (7) ◽  
pp. 153-156 ◽  
Author(s):  
D. Wedi ◽  
P. A. Wilderer

Most of the fundamental processes responsible for enhanced biological phosphorus removal (EBPR) were obtained through laboratory tests under defined conditions with pure or enriched cultures. Acinetobacter sp. was identified as the most important group of bacteria responsible for bio-P removal. Full scale data showed, however, that laboratory results do not match full scale results well enough. There is a lack of data on the effects of sub-optimal process conditions such as inadequate availability of volatile fatty acids (VFA), high nitrate recycle, storm water inflow or low temperatures. In this paper the results of full scale experiments on P-release are presented and compared with theoretical values. Measurements at a full scale Phoredox-system showed a surprisingly low P-release in the anaerobic reactor. Only 4 to 10% of the phosphorus in the activated sludge was released in the bulk liquid. With laboratory batch-tests, a maximum of 20% of the P in the sludge could be released. It is assumed that under the prevailing process conditions either the fraction of Acinetobacter sp. was very small, or bacteria other than Acinetobacter sp. were responsible for the P-removal, or most of the phosphorus was bound chemically but mediated by biological processes.


2003 ◽  
Vol 48 (1) ◽  
pp. 87-94 ◽  
Author(s):  
B. Lesjean ◽  
R. Gnirss ◽  
C. Adam ◽  
M. Kraume ◽  
F. Luck

The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.


Sign in / Sign up

Export Citation Format

Share Document