Carbon tetrachloride biodegradation in a fixed-biofilm reactor and its kinetic study

1998 ◽  
Vol 38 (8-9) ◽  
pp. 155-162 ◽  
Author(s):  
G. Jin ◽  
A. J. Englande

Kinetics of Carbon Tetrachloride biodegradation are evaluated in a continuous-flow fixed-biofilm reactor with controlled initial redox potential. The column was seeded with a mixed culture of indigenous microorganisms Pseudomonas cepacia and Providencia stuartii. The fixed biofilm reactor exhibited 98%–99.9% biodegradation of CT introduced into the reactor at an initial concentration of about 200 μg/l for retention times of 1 to 4 days respectively. Four models were employed to evaluate the kinetics of CT biodegradation. These included: Eckenfelder (1989), Arvin (1991), Bouwer and McCarty (1985) and a biphasic model. Comparison of calculated results with observed results between these models agreed very closely to each other (0.968 < R2 < 0.999). Predicted performance was best described by the model of Bouwer and McCarty (1985). However, the biphasic and Eckenfelder models provided excellent correlations and were much simpler to apply. The biphasic model yielded very good correlations of the data for all detention times evaluated; whereas, the Eckenfelder model effected comparable results only at the longer retention times studied.

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 547
Author(s):  
Yen-Hui Lin ◽  
Yi-Jie Gu

Herein, the progress of nitrate removal by a heterotrophic culture in a batch reactor and continuous-flow fixed-biofilm reactor was examined. Two batch experiments for nitrate reduction with acetate degradation using 250 mL batch reactors with acclimated denitrifying biomass were conducted. The experimental results indicated that the nitrate was completely reduced; however, the acetate remained at a concentration of 280 mg/L from initial nitrate concentration of 100 mg/L. However, the acetate was fully biodegraded by the denitrifying biomass at an initial nitrate concentration of 300 mg/L. To evaluate the biokinetic parameters, the concentration data of nitrate, nitrite, acetate, and denitrifying biomass from the batch kinetic experiments were compared with those of the batch kinetic model system. A continuous-flow fixed-biofilm reactor was used to verify the kinetic biofilm model. The removal efficiency of nitrate in the fixed-biofilm reactor at the steady state was 98.4% accompanied with 90.5% acetate consumption. The experimental results agreed satisfactorily with the model predictions. The modeling and experimental approaches used in this study could be applied in the design of a pilot-scale, or full-scale, fixed-biofilm reactor for nitrate removal in water and wastewater treatment plants.


1996 ◽  
Vol 34 (10) ◽  
pp. 59-66
Author(s):  
G. Jin ◽  
A. J. Englande

Biodegradation of hazardous waste is often the most cost-effective technique suitable for purifying large quantities of polluted groundwater and industrial effluents. In an effort of optimizing environmental conditions for microorganisms to degrade carbon tetrachloride, culture redox potential (Eh) was demonstrated as having a critical role. The microorganisms tested were isolated from contaminated field sites and included Pseudomonas cepacia and Providencia stuartii. Ti(III) citrate was used as a reducing agent to poise Eh at designed values. Over 99% degradation of carbon tetrachloride was effected in 3 days at −250 mV ≤ Eh ≤ −200 mV. Lesser rates were observed at Eh ≥ 0 mV. Kinetic analysis indicated that the overall degradation rate constant increased from 2.75×10−3 h−1 to 4.75×10−2 h−1 by controlling Eh at about −200 mV compared with Eh at ≥ 0 mV. Results indicated that the implementation of critical redox potential may be effective in optimizing CT biodegradation activity.


1980 ◽  
Vol 45 (9) ◽  
pp. 2391-2399 ◽  
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene with butyllithium as the initiator was investigated by the gas chromatographic method. After completion of the initial period of the reaction, its order with respect to the initial concentration of initiator is negative at the concentrations of the latter between 0.01 and 0.25 mol/l, and positive at higher concentrations. A reaction scheme has been suggested with respect to the "cross" association of butyllithium and of the "living" oligoisoprene.


Sign in / Sign up

Export Citation Format

Share Document