Operation of different membrane bioreactors: experimental results and physiological state of the micro-organisms

2000 ◽  
Vol 41 (10-11) ◽  
pp. 269-277 ◽  
Author(s):  
S. Rosenberger ◽  
R. Witzig ◽  
W. Manz ◽  
U. Szewzyk ◽  
M. Kraume

Lab-scale and pilot-scale activated sludge bioreactors with integrated microfiltration membranes were operated over a period of up to three years. During the entire operation period no excess sludge was removed from the bioreactors apart from sampling, resulting in highly concentrated biomass in the reactors. The dry weight of the sludge ranged from 15 to 23 g MLSS l–1 for a plant fed with municipal wastewater and up to 60 g ll–1 for a lab-scale plant fed with high strength molasses. Stable biomass concentrations were reached at F/M ratios as low as approximately 0.07 kg COD (kg MLSS)–1 d–1. The degradation performance of the analyzed reactors was high and stable. Direct microscopical studies revealed high amounts of free suspended cells and at various times also high numbers of filamentous bacteria. Surprisingly only low numbers of protozoa were observed during most of the time. By use of fluorescent in situ hybridization (FISH) only about 40% to 50% of all bacteria emitted probe conferred fluorescence signals sufficient for detection, compared to around 80% cells detectable in conventional activated sludge. Studies on oxygen consumption rates indicated that the biomass in the bioreactor was substrate limited. These data suggest that substrate is mainly oxidized and not used for growth purposes which offers the possibility to operate membrane bioreactors with significantly reduced secondary sludge production.

2001 ◽  
Vol 43 (11) ◽  
pp. 323-328 ◽  
Author(s):  
M. von Sperling ◽  
V. H. Freire ◽  
C. A. de Lemos Chernicharo

Recent research has indicated the advantages of combining anaerobic and aerobic processes for the treatment of municipal wastewater, especially for warm-climate countries. Although this configuration is seen as an economical alternative, is has not been investigated in sufficient detail on a worldwide basis. This work presents the results of the monitoring of a pilot-scale plant comprising of an UASB reactor followed by an activated sludge system, treating actual municipal wastewater from a large city in Brazil. The plant was intensively monitored and operated for 261 days, divided into five different phases, working with constant and variable inflows. The plant showed good COD removal, with efficiencies ranging from 69% to 84% for the UASB reactor, from 43% to 56% for the activated sludge system only and from 85% to 93% for the overall system. The final effluent suspended solids concentration was very low, with averages ranging from 13 to 18 mg/l in the typical phases of the research. Based on the very good overall performance of the system, it is believed that it is a better alternative for warm-climate countries than the conventional activated sludge system, especially considering the total low hydraulic detention time (4.0 h UASB; 2.8 h aerobic reactor; 1.1 h final clarifier), the savings in energy consumption, the absence of primary sludge and the possibility of thickening and digesting the aerobic excess sludge in the UASB reactor itself.


1996 ◽  
Vol 34 (9) ◽  
pp. 197-203 ◽  
Author(s):  
H. Winnen ◽  
M. T. Suidan ◽  
P. V. Scarpino ◽  
B. Wrenn ◽  
N. Cicek ◽  
...  

The activated sludge process has been used extensively to treat municipal wastewater. The membrane bioreactor (MBR) process is a modification of the conventional activated sludge process where the clarifier is replaced with a membrane system for separation between the mixed liquor and the effluent. This paper presents the biological and physical performance data of a pilot-scale membrane bioreactor system, fed with a synthetic wastewater. At steady state, particularly high effluent quality was obtained and maintained for an extended period of time. Heterotrophic plate counting showed that the membrane retains heterotrophic microorganisms. Bacteriophage MS-2 was used to determine the retention of viruses. The membrane proved to retain the MS-2 virus.


2010 ◽  
Vol 2010 (5) ◽  
pp. 393-404
Author(s):  
Ufuk. G. Erdal ◽  
V. Shyamasundar ◽  
K. Wilson ◽  
L. Schimmoller ◽  
G.T. Daigger

2020 ◽  
Vol 297 ◽  
pp. 122401 ◽  
Author(s):  
Giorgio Mannina ◽  
Alida Cosenza ◽  
Taise Ferreira Rebouças

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 231
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Zhenlin Liang ◽  
Xuguang Hou ◽  
Zhipeng Li ◽  
...  

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.


Chemosphere ◽  
2020 ◽  
Vol 259 ◽  
pp. 127397 ◽  
Author(s):  
Kai Tang ◽  
Gordon T.H. Ooi ◽  
Elena Torresi ◽  
Kamilla M.S. Kaarsholm ◽  
Adam Hambly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document