Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors

2018 ◽  
Vol 34 ◽  
pp. 143-153 ◽  
Author(s):  
Daniel B. Johnson ◽  
Lance C. Schideman ◽  
Thomas Canam ◽  
Robert J.M. Hudson
2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


2003 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

Water problems have to be solved in an integrated way, and sustainability has become a major issue. For this reason, developing more sustainable wastewater treatment processes is needed. New discoveries and good understanding on microbial conversions of nitrogen and phosphorus make more sustainable processes possible. New options for decentralized sustainable sanitation are generally compared to conventional sewage systems, we think that for a proper comparison also innovative centralized treatment schemes should be evaluated. In this article, a more sustainable WWTP is proposed for municipal wastewater treatment, mainly based on the principles of denitrifying dephosphatation and anaerobic ammonium oxidation (ANAMMOX). The proposed system consists of a first stage of the A/B process in which maximal sludge production is achieved. In this way, COD is regained as sludge for methanation. The following BCFS® and CANON processes can remove N and P with minimal or no COD need. As a potential fertiliser, struvite can easily be removed from the sludge water by adding magnesium compounds. A case study is done on the basis of the mass balance over the proposed plant. The effluent from the system has a good quality to be recycled. This could also make a contribution to meeting the world's water needs and lessening the impact on the world's water environment. Since all the separate units are already applied or tested on pilot-scale, no problems for technical implementation are foreseen.


Author(s):  
Klaus Doelle ◽  
Qian Wang

The study tested a designed and built pilot scale packed bio-tower system under continuous operation using pre-clarified municipal wastewater. Performance was evaluated by measuring the removal of chemical oxygen demand and nitrogen ammonia. The pilot scale packed bio-tower system had a diameter of 1209 mm (4 ft.) and a height of 3,962 mm (13 ft.) and contained Bentwood CF-1900 bacteria growth media with a surface area of 6,028.80 ft² (560.09 m²). The municipal residential sewage was fed into a 1,481 l (375 gal.) recirculation reservoir at a temperature of 15°C (59.0°F) and a flow rate between 7,571 l/d (2000 gal/d) and 90,850 l/d (24,000 gal/d) and recirculated through the bio-tower with a fixed recirculation rate of 75.7 l/min (20 gal/min). The influent COD value reduction achieved is between 63.4% and 84.8%, whereas the COD influent value varied between 87 mg/l and 140 mg/l. The influent NH3-N reduction achieved was between 99.8% and 91.8% whereas the influent NH3-N value was between 28.8 mg/l and 18.6 mg/l  at a flow rate between 7571 l/d (2000 gal/d) and 90,850 l/d (24,000 gal/d).


Chemosphere ◽  
2007 ◽  
Vol 66 (8) ◽  
pp. 1535-1544 ◽  
Author(s):  
Mar Esperanza ◽  
Makram T. Suidan ◽  
Ruth Marfil-Vega ◽  
Cristina Gonzalez ◽  
George A. Sorial ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
George Tangyie Chi ◽  
John Churchley ◽  
Katherine D. Huddersman

The pollution of water sources by endocrine disrupting compounds (EDCs) and pharmaceutical and personal care products (PPCPs) is a growing concern, as conventional municipal wastewater treatment systems are not capable of completely removing these contaminants. A continuous stir tank reactor incorporating a modified polyacrylonitrile (PAN) catalyst and dosed with hydrogen peroxide in a heterogeneous Fenton’s process was used at pilot scale to remove these compounds from wastewater that has undergone previous treatment via a conventional wastewater treatment system. The treatment system was effective at ambient temperature and at the natural pH of the wastewater. High levels of both natural and synthetic hormones (EDCs) and PPCPs were found in the effluent after biological treatment of the wastewater. The treatment system incorporating the modified PAN catalyst/H2O2decomposed >90% of the EDCs and >40% of PPCPs using 200 mgL−1H2O2, 3 hr residence time. The estrogenic potency EE2-EQ was removed by 82.77%, 91.36%, and 96.13% from three different wastewater treatment plants. BOD was completely removed (below detection limits); 30%–40% mineralisation was achieved and turbidity reduced by more than 68%. There was a <4% loss in iron content on the catalyst over the study period, suggesting negligible leaching of the catalyst.


Author(s):  
Tong Yu ◽  
Chenlu Xu ◽  
Feng Chen ◽  
Haoshuai Yin ◽  
Hao Sun ◽  
...  

Abstract Microcoagulation has recently been considered as a promising pretreatment for an ultrafiltration (UF) process from numerous studies. To investigate the effects of microcoagulation on the performance of the UF–reverse osmosis (RO) system treating wastewater with high and fluctuant salinity, different dosages of coagulant (poly-aluminum chloride) were added prior to the UF unit in a pilot-scale UF–RO system for a 10-week period operation. Microcoagulation obviously improved the contaminant removal and cleaning efficiencies, including water backwash, chemical enhanced backwash and cleaning in place processes. Organic fouling was dominated during the initial stage of the RO membrane fouling. The microbial communities of water samples and foulant on the RO membrane were similar to those of seawater and foulant on the RO membranes from seawater RO plants. The microbial community of the foulant on the membrane was similar to that of UF permeate and RO concentrate. These results demonstrated that microcoagulation could improve the performance of the UF–RO system treating the effluent with high and fluctuant salinity from a coastal municipal wastewater treatment plant.


2019 ◽  
Vol 97 ◽  
pp. 01017 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena Gogina

Process removal nutrients, especially nitrogen – ammonia in municipal wastewater treatment is a challenger of design and operate wastewater treatment plant. Nowadays in Vietnam, technology SBR has been wide applied in biological wastewater treatment but the concentration of nitrogen – ammonia in treated water cannot achieve the discharge standard. For the purpose to reach the Vietnamese Standard A, the modification of SBR has been added the anoxic phase into operated cycle to create the denitrification’s environment and enhance performance of ammonia – nitrogen removal in municipal wastewater treatment at present and in the near future. The results of experiment shows that, the efficiency of N – NH4 removal in reactors sustainable in range 75 – 80% with the nitrogen loadings rate from 0.07 – 0.25 kg N – NH4/kg sludge/d. However, in 3 hours of anoxic phase, the value of specific denitrification rate is 0.10 – 0.15 kg N – NO3/kg sludge/d with the organic loadings rate in range 0.3 – 1.0 kg BOD/kg sludge/d and can reach the maximum is 0.2 kg N – NO3/kg sludge/d when the organic loadings rate increase to 2.0 kg BOD/kg sludge/d.


2020 ◽  
Vol 12 (11) ◽  
pp. 4758
Author(s):  
Huyen T.T. Dang ◽  
Cuong V. Dinh ◽  
Khai M. Nguyen ◽  
Nga T.H. Tran ◽  
Thuy T. Pham ◽  
...  

Fixed-film biofilm reactors are considered one of the most effective wastewater treatment processes, however, the cost of their plastic bio-carriers makes them less attractive for application in developing countries. This study evaluated loofah sponges, an eco-friendly renewable agricultural product, as bio-carriers in a pilot-scale integrated fixed-film activated sludge (IFAS) system for the treatment of municipal wastewater. Tests showed that pristine loofah sponges disintegrated within two weeks resulting in a decrease in the treatment efficiencies. Accordingly, loofah sponges were modified by coating them with CaCO3 and polymer. IFAS pilot tests using the modified loofah sponges achieved 83% organic removal and 71% total nitrogen removal and met Vietnam’s wastewater effluent discharge standards. The system achieved considerably high levels of nitrification and it was not limited by the loading rate or dissolved oxygen levels. Cell concentrations in the carriers were twenty to forty times higher than those within the aeration tank. Through 16S-rRNA sequencing, the major micro-organism types identified were Kluyvera cryocrescens, Exiguobacterium indicum, Bacillus tropicus, Aeromonas hydrophila, Enterobacter cloacae, and Pseudomonas turukhanskensis. This study demonstrated that although modified loofah sponges are effective renewable bio-carriers for municipal wastewater treatment, longer-term testing is recommended.


Sign in / Sign up

Export Citation Format

Share Document