Municipal wastewater treatment targeting pharmaceuticals by a pilot-scale hybrid attached biofilm and activated sludge system (Hybas™)

Chemosphere ◽  
2020 ◽  
Vol 259 ◽  
pp. 127397 ◽  
Author(s):  
Kai Tang ◽  
Gordon T.H. Ooi ◽  
Elena Torresi ◽  
Kamilla M.S. Kaarsholm ◽  
Adam Hambly ◽  
...  
2020 ◽  
Vol 12 (11) ◽  
pp. 4758
Author(s):  
Huyen T.T. Dang ◽  
Cuong V. Dinh ◽  
Khai M. Nguyen ◽  
Nga T.H. Tran ◽  
Thuy T. Pham ◽  
...  

Fixed-film biofilm reactors are considered one of the most effective wastewater treatment processes, however, the cost of their plastic bio-carriers makes them less attractive for application in developing countries. This study evaluated loofah sponges, an eco-friendly renewable agricultural product, as bio-carriers in a pilot-scale integrated fixed-film activated sludge (IFAS) system for the treatment of municipal wastewater. Tests showed that pristine loofah sponges disintegrated within two weeks resulting in a decrease in the treatment efficiencies. Accordingly, loofah sponges were modified by coating them with CaCO3 and polymer. IFAS pilot tests using the modified loofah sponges achieved 83% organic removal and 71% total nitrogen removal and met Vietnam’s wastewater effluent discharge standards. The system achieved considerably high levels of nitrification and it was not limited by the loading rate or dissolved oxygen levels. Cell concentrations in the carriers were twenty to forty times higher than those within the aeration tank. Through 16S-rRNA sequencing, the major micro-organism types identified were Kluyvera cryocrescens, Exiguobacterium indicum, Bacillus tropicus, Aeromonas hydrophila, Enterobacter cloacae, and Pseudomonas turukhanskensis. This study demonstrated that although modified loofah sponges are effective renewable bio-carriers for municipal wastewater treatment, longer-term testing is recommended.


1991 ◽  
Vol 23 (4-6) ◽  
pp. 1097-1106 ◽  
Author(s):  
H. Nakazawa ◽  
K. Tanaka

Mathematical models based on the kinetic aspect of the sequencing batch activated sludge process were developed to explain the characteristics of the process treating municipal wastewater. These models are a steady-state model dealing with the overall relationship between biomass concentrations in a reactor and operational conditions of the process, and a kinetic model dealing with the behaviors of biomass and substrate in a reactor within one cycle time of the process. Applying these mathematical models for the results of pilot-scale experiments for municipal wastewater treatment, reasonable parameters' values were obtained and the effects of operating strategies including the aeration time ratio and the solids retention time became clear for the process performance.


2013 ◽  
Vol 69 (1) ◽  
pp. 177-184 ◽  
Author(s):  
F. Morgan-Sagastume ◽  
F. Valentino ◽  
M. Hjort ◽  
D. Cirne ◽  
L. Karabegovic ◽  
...  

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters with comparable properties to some petroleum-based polyolefins. PHA production can be achieved in open, mixed microbial cultures and thereby coupled to wastewater and solid residual treatment. In this context, waste organic matter is utilised as a carbon source in activated sludge biological treatment for biopolymer synthesis. Within the EU project Routes, the feasibility of PHA production has been evaluated in processes for sludge treatment and volatile fatty acid (VFA) production and municipal wastewater treatment. This PHA production process is being investigated in four units: (i) wastewater treatment with enrichment and production of a functional biomass sustaining PHA storage capacity, (ii) acidogenic fermentation of sludge for VFA production, (iii) PHA accumulation from VFA-rich streams, and (iv) PHA recovery and characterisation. Laboratory- and pilot-scale studies demonstrated the feasibility of municipal wastewater and solid waste treatment alongside production of PHA-rich biomass. The PHA storage capacity of biomass selected under feast–famine with municipal wastewater has been increased up to 34% (g PHA g VSS−1) in batch accumulations with acetate during 20 h. VFAs obtained from waste activated sludge fermentation were found to be a suitable feedstock for PHA production.


2021 ◽  
Author(s):  
GM Itheshamul Islam

Nitrification is an essential microbial process in the global nitrogen cycle. The first step of nitrification is ammonia oxidation which is achieved by bacteria and archaea and is crucial in decreasing ammonia concentrations that are persistently high in wastewater. This study examined the composition, abundance and identity of the microbial community in activated sludge with a focus on characterizing ammonia oxidizing bacteria and archaea in a full-scale municipal wastewater treatment plant (MWTP). Specifically, two pharmaceutical compounds Tetracycline and Ibuprofen, and their effects on the community composition of bacteria and protozoa in activated sludge was investigated using PCR coupled with denaturing gradient gel electrophoresis (DGGE). In addition, the composition, abundance and activity of the ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed from aerobic activated sludge, recycled sludge and anaerobic digesters of the Humber MWTP using molecular techniques such as PCR, Quantitative PCR, Reverse Transcription-PCR and DGGE. The findings demonstrated that Tetracycline did not appear to alter community composition of bacteria in the activated sludge, rather, the operational parameters of the sequencing batch reactors such as feeding rates and SRT have shown to alter the richness of bacterial communities. However, Ibuprofen affected some members in the protozoan community in activated sludge. In the full-scale Humber MWTP using the conventional activated sludge system, the aeration tanks contained 1.8 × 105 copies of the AOB amoA gene per 100 ng of DNA. In contrast, the anaerobic digester tanks contained 7.3 × 102 copies of the AOA amoA gene per 100ng of DNA. This study also found that AOB were dominant in activated sludge samples, regardless of the operational parameters. The quantification of cDNA transcripts of the amoA gene also indicated that AOB may be more active than AOA in the activated sludge system. Overall, it appears that AOA are very niche specific and thrive in very low oxygenated environments, while AOB proliferate and play a major role in aerobic ammonia oxidation occurring in MWTPs.


2021 ◽  
Author(s):  
GM Itheshamul Islam

Nitrification is an essential microbial process in the global nitrogen cycle. The first step of nitrification is ammonia oxidation which is achieved by bacteria and archaea and is crucial in decreasing ammonia concentrations that are persistently high in wastewater. This study examined the composition, abundance and identity of the microbial community in activated sludge with a focus on characterizing ammonia oxidizing bacteria and archaea in a full-scale municipal wastewater treatment plant (MWTP). Specifically, two pharmaceutical compounds Tetracycline and Ibuprofen, and their effects on the community composition of bacteria and protozoa in activated sludge was investigated using PCR coupled with denaturing gradient gel electrophoresis (DGGE). In addition, the composition, abundance and activity of the ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed from aerobic activated sludge, recycled sludge and anaerobic digesters of the Humber MWTP using molecular techniques such as PCR, Quantitative PCR, Reverse Transcription-PCR and DGGE. The findings demonstrated that Tetracycline did not appear to alter community composition of bacteria in the activated sludge, rather, the operational parameters of the sequencing batch reactors such as feeding rates and SRT have shown to alter the richness of bacterial communities. However, Ibuprofen affected some members in the protozoan community in activated sludge. In the full-scale Humber MWTP using the conventional activated sludge system, the aeration tanks contained 1.8 × 105 copies of the AOB amoA gene per 100 ng of DNA. In contrast, the anaerobic digester tanks contained 7.3 × 102 copies of the AOA amoA gene per 100ng of DNA. This study also found that AOB were dominant in activated sludge samples, regardless of the operational parameters. The quantification of cDNA transcripts of the amoA gene also indicated that AOB may be more active than AOA in the activated sludge system. Overall, it appears that AOA are very niche specific and thrive in very low oxygenated environments, while AOB proliferate and play a major role in aerobic ammonia oxidation occurring in MWTPs.


1996 ◽  
Vol 33 (12) ◽  
pp. 199-210
Author(s):  
R. Gnirss ◽  
A. Peter-Fröhlich ◽  
V. Schmidt

For municipal wastewater treatment, space-saving 10m deep activated sludge tanks are an interesting alternative to conventional tanks of shallow construction. Results from pilot tests in the Berlin-Ruhleben WWTP have shown that the biological P-elimination, nutrification and denitrification processes can be implemented as in shallow tanks. However, the activated sludge did not settle satisfactorily. Flotation was implemented in the process for secondary clarification and in the meanwhile has shown to be advantageous. Tests run over a period of some years with the pilot plant have proven the feasibility of this process. Energy requirements for both systems were found to be approximately the same. A cost estimate based on a preplan revealed a 10% advantage in favour of the 10m WWTP with flotation. For these reasons, one 10m WWTP with flotation for secondary clarification and a capacity of 80,000 m3/d will be built in Berlin in the near future.


Sign in / Sign up

Export Citation Format

Share Document