Simulation and applications of a novel modified SBR system for biological nutrient removal

2001 ◽  
Vol 43 (3) ◽  
pp. 215-222 ◽  
Author(s):  
W. Wu ◽  
P. Timpany ◽  
B. Dawson

Dynamic simulation and applications of a novel, continuous-fed, constant level modified sequencing batch reactor for biological nutrient removal are presented. The underlying mathematical model and practical applications of the simulation are discussed. Case studies are presented to illustrate the applications as well as the flexibility of the system in meeting different wastewater treatment requirements. Operation experience from full-scale wastewater treatment plant demonstrates the reliability, ease of operation and high efficiency of the system. Average BOD5, total nitrogen, total phosphorus and TSS removals of 97, 81, 88 and 94% are achieved respectively on an annual basis with little operator attention. Consistently high waste activated sludge concentrations are demonstrated, averaging approximately 20,000 mg/L.

1996 ◽  
Vol 33 (3) ◽  
pp. 29-38 ◽  
Author(s):  
R. S. Bernardes ◽  
A. Klapwijk

This investigation aims to monitor a strategy for biological nutrient removal (nitrogen and phosphorus) in a Sequencing Batch Reactor (SBR) treating domestic wastewater. For this, the performance of an SBR with nitrification, denitrification, carbon oxidation and phosphorus removal is evaluated. During this study the influent used was pre-settled domestic wastewater from Bennekom-Municipal Treatment Plant (The Netherlands). The average influent COD, TKN and phosphate were 443 mg COD/1, 71 mg N/1 and 7 mg P/1, respectively. Acetic acid was added to this influent from a feed solution, to increase the COD by an extra 100 mg COD/1. In this study, a pilot plant SBR was operated during 5 months in order to have: i) a mixed culture able to perform carbon oxidation, nitrification, denitrification and biological phosphorus removal and ii) long term assessment of the biological nitrogen and phosphorus removal processes. Pilot plant SBR consists of two cylindric polystyrene vessels, the first with total volume of 0.35 m3 (Reactor 1) and the second with total volume of 1.3 m3 (Reactor 2). The effluent had, in average, phosphate concentration lower than 1 mg P/1 and nitrogen concentration lower than 12 mg N/1.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 453-462
Author(s):  
E.U. Cokgor ◽  
C.W. Randall

The Wilderness Wastewater Treatment Plant (WWTP) located in Orange County, Virginia is a four concentric ring oxidation ditch activated sludge system with a rated capacity of 1,935 m3/day. The three outer rings are used for wastewater treatment and the inner ring is used as an aerobic digester. The flow capacity has been increased from 1,935 to 3,760 m3/d, however, the desired design capacity has since been increased to 3,870 m3/d, and there are plans to eventually expand to approximately 4,840 m3/d with improved nitrogen removal. The design goal for the planned upgrade is to discharge an effluent that contains less than 10 mg/l total nitrogen (TN) at all times, with an annual average of 8 mg/l or less. In this study, the pre-upgrade performance of the Wilderness Wastewater Treatment Plant was evaluated and several modifications were recommended for the incorporation of biological nutrient removal (BNR).


2018 ◽  
Vol 85 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Peter Leonard ◽  
Emma Tarpey ◽  
William Finnegan ◽  
Xinmin Zhan

This Research Communication describes an investigation into the viability of an Intermittently Aerated Sequencing Batch Reactor (IASBR) for the treatment of dairy processing wastewater at laboratory-scale. A number of operational parameters have been varied and the effect has been monitored in order to determine optimal conditions for maximising removal efficiencies. These operational parameters include Hydraulic Retention Time (HRT), Solids Retention Time (SRT), aeration rate and cycle length. Real dairy processing wastewater and synthetic wastewater have been treated using three laboratory-scale IASBR units in a temperature controlled room. When the operational conditions were established, the units were seeded using sludge from a municipal wastewater treatment plant for the first experiment, and sludge from a dairy processing factory for the second and third experiment. In experiment three, the reactors were fed on real wastewater from the wastewater treatment plant at this dairy processing factory. These laboratory-scale systems will be used to demonstrate over time that the IASBR system is a consistent, viable option for treatment of dairy processing wastewater in this sector. In this study, the capacity of a biological system to remove both nitrogen and phosphorus within one reactor will be demonstrated. The initial operational parameters for a pilot-scale IASBR system will be derived from the results of the study.


Sign in / Sign up

Export Citation Format

Share Document