Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry

2001 ◽  
Vol 44 (4) ◽  
pp. 109-116 ◽  
Author(s):  
A. Bonmatí ◽  
X. Flotats ◽  
L. Mateu ◽  
E. Campos

Feasibility of anaerobic digestion of pig slurry is dependent, among other factors, on the biogas production rate, which is low compared with other organic wastes, and on the profitable uses of surplus thermal energy produced, a limiting factor in warm geographical areas. The objectives of this work are determining whether low temperature thermal pretreatment (<90°C) improves pig slurry anaerobic digestion, and determining whether organic matter degradation during the thermal pretreatment is due to thermal phenomena (80°C) or to enzymatic ones (60°C). The thermal degradation tests showed that hydrolysis occurring during the thermal pretreatment is due to thermal phenomena. The increase in soluble substances were significantly larger at 80°C than at 60°C (both during 3 h). Two types of slurry were used in the batch anaerobic digestion tests. The effect of thermal pretreatment differed with the type of slurry: it was positive with almost non-degraded slurries containing low NH4+-N concentration, and negative (inhibition of the anaerobic digestion process) when using degraded slurries with high NH4+-N content.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3761 ◽  
Author(s):  
Abdullah Nsair ◽  
Senem Onen Cinar ◽  
Ayah Alassali ◽  
Hani Abu Qdais ◽  
Kerstin Kuchta

The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.


2020 ◽  
Vol 6 ◽  
pp. 417-422 ◽  
Author(s):  
Y. El Gnaoui ◽  
F. Karouach ◽  
M. Bakraoui ◽  
M. Barz ◽  
H. El Bari

2020 ◽  
Vol 146 ◽  
pp. 2330-2336 ◽  
Author(s):  
Heng Li ◽  
Zheng Chen ◽  
Dun Fu ◽  
Yuanpeng Wang ◽  
Yanmei Zheng ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 532-537 ◽  
Author(s):  
Yumika Kitazono ◽  
Ikko Ihara ◽  
Kiyohiko Toyoda ◽  
Kazutaka Umetsu

This study evaluated antibiotic degradation and biogas production during anaerobic digestion of dairy manure contained two common veterinary antibiotics at 37 °C. After 18 days of digestion, the concentration of chlortetracycline (CTC) decreased more than 80% regardless of the initial CTC concentration. The concentration of cefazolin (CEZ) decreased from 10 to 0.08 mg/L in 6 days. Less than 50 mg/L CTC and 10 mg/L CEZ had negligible impact on biogas production during anaerobic digestion process. The result showed that the anaerobic digestion has a potential to degrade antibiotic residues in livestock manure.


2011 ◽  
Vol 2011 (18) ◽  
pp. 249-264 ◽  
Author(s):  
Bryce Figdore ◽  
Gregory Bowden ◽  
Beverley Stinson ◽  
Bernhard Wett ◽  
Martin Hell ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 100310 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Shahrom Md Zain ◽  
Biplob Kumar Pramanik

2019 ◽  
Vol 42 (9) ◽  
pp. 1834-1839 ◽  
Author(s):  
Noorlisa Harun ◽  
Zuraini Hassan ◽  
Norazwina Zainol ◽  
Wan Hanisah Wan Ibrahim ◽  
Haslenda Hashim

Sign in / Sign up

Export Citation Format

Share Document