degradation tests
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Fengjuan Ge ◽  
Jie Zhu ◽  
Yan Xu ◽  
Jing Li ◽  
Xueyang Zhang

BiOBr photocatalysts were prepared by changing the solvent and synthesis method. SEM, XRD and BET characterization shows that the sample prepared in high-viscosity solution by precipitation method has tremella-like microstructure, with smaller size and higher surface area. Among them, the BiOBr prepared in glycerol solution (GR-P) has the highest surface area of 113.8 m2⋅[Formula: see text]. XRD also indicates that the GR-P has much more exposed (110) facets than other samples. The Rhodamine B degradation tests show that the GR-P has the best activity on both deethylation and aromatic ring destruction steps, indicating that the exposed (110) facets promote the degradation process.


Author(s):  
Betania Sánchez-Santamaría ◽  
Boris Mederos ◽  
Delfino Cornejo-Monroy ◽  
Rey David Molina-Arredondo ◽  
Víctor Castaño

Accelerated degradation tests (ADT) are widely used in the manufacturing industry to obtain information on the reliability of components and materials, through degrading the lifespan of the product by applying an acceleration factor which causes damage to the material. The main objective is to obtain fast information which is modeled to estimate the characteristics of the material life under normal conditions of use and to save time and expenses. The purpose of this work is to estimate the lifespan distribution of gold nanoparticles stabilized with lipoic acid (GNPs@LA) through accelerated degradation tests applying sodium chloride (NaCl) as an acceleration factor. For this, the synthesis of GNPs@LA was carried out, a constant stress ADT (CSADT) was applied, and the non-linear Wiener process was proposed with random effects, error measures and different covariability for the adjustment of the degradation signals. The information obtained with the test and analysis allows us to obtain the life distribution in GNPs@LA, the results make possible to determine the guaranteed time for a possible commercialization and successful application based on the stability of the material. In addition, for the evaluation and selection of the model, the Akaike and Bootstraping criteria were used.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3007
Author(s):  
Marta Vallecillo-Rivas ◽  
Manuel Toledano-Osorio ◽  
Cristina Vallecillo ◽  
Manuel Toledano ◽  
Raquel Osorio

Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.


Author(s):  
Sergio Loffredo ◽  
Sofia Gambaro ◽  
Leticia Marin de Andrade ◽  
Carlo Paternoster ◽  
Riccardo Casati ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1041
Author(s):  
Marta Piątek-Hnat ◽  
Kuba Bomba ◽  
Janusz P. Kowalski-Stankiewicz ◽  
Jakub Pęksiński ◽  
Agnieszka Kozłowska ◽  
...  

There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1520
Author(s):  
Tomoki Omori ◽  
Masahiro Nakanishi ◽  
Daisuke Tashima

The demand for electric double-layer capacitors, which have high capacity and are maintenance-free, for use in a variety of devices has increased. Nevertheless, it is important to know the degradation behavior of these capacitors at high temperatures because they are expected to be used in severe environments. Therefore, degradation tests at 25 °C and 80 °C were carried out in the current study to analyze the degradation behavior. Steam-activated carbon, Ketjen black, and PTFE were used as the electrodes, conductive material, and binder, respectively, and KOH was used as the electrolyte. The impedance and capacitance were calculated from the voltage and current in the device using the alternating current (AC) impedance method. The results showed that the impedance increased and the capacitance decreased over 14 days at 80 °C, which is the inverse of what we observed at 25 °C. Rapid degradation was also confirmed from the 80 °C degradation test. The residual voltage after measuring the current and voltage was a prominent factor influencing this rapid degradation.


Sign in / Sign up

Export Citation Format

Share Document