Effect of important operational parameters on performance of coarse pore filtration activated sludge process

2002 ◽  
Vol 46 (9) ◽  
pp. 229-236 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
H. Satoh ◽  
T. Mino

A coarse pore filter can be applied inside the aeration tank instead of sedimentation tank for liquid separation from the sludge. It has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study was to investigate the effect of important operational parameters such as flux, aeration intensity, and solid retention time (SRT) on the performance of the coarse pore filtration activated sludge process. The effect of these parameters was studied in laboratory scale experiments. It was found that the flux had a significant role in the effluent quality of this system. The effluent SS and turbidity were not changed significantly at different aeration intensities. Three SRTs, 10, 30 and longer days (without excess sludge) were used for three reactors to check the effect of this parameter on the system performance. The results of the reactors with SRTs about 10 and 30 days have shown very good effluent quality without any filter clogging for more than 4 months operation. For the reactor with long SRT, the filter clogging was observed after about 80 days of operation, which caused the increase of the operation pressure and deterioration in the effluent quality for a few days.

2006 ◽  
Vol 54 (10) ◽  
pp. 55-66 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
Y. Guan ◽  
H. Satoh ◽  
T. Mino

Coarse pore filtration activated sludge process is a type of hybrid process in which the secondary settling tank of the conventional activated sludge process is replaced by non- woven and coarse pore filter modules. The filter has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study is to find out the effect of the microbial community structure on filter clogging in the coarse pore filtration activated sludge process under high MLSS concentration in aerobic and anoxic/aerobic (A/A) conditions. Filter clogging started from day 65 and 70 in the A/A and aerobic process, respectively, but it was more severe in the A/A process compared to that in the aerobic process. EPS contents of sludge did not change significantly during the operation in both processes, and did not have a crucial effect on the observed filter clogging. There was no strong evidence for direct effect of the type and number of metazoa on filter clogging. The main difference between aerobic sludge and A/A sludge during the filter clogging period was the relative abundance of filamentous bacteria. According to the obtained results, it can be concluded that a higher presence of filamentous bacteria could reduce the severity of filter clogging in a coarse pore filtration activated sludge process.


2003 ◽  
Vol 47 (12) ◽  
pp. 73-80 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
Y. Guan ◽  
H. Satoh ◽  
T. Mino

In this research, three SRTs (about 10, 30 and 75 days (without wasting the sludge except for sampling)) were applied to three reactors equipped with non-woven and coarse pore filter modules. The flux was adjusted to about 1 m/d during operation. The main objective of the study was to compare the performance and microbial population dynamics under different SRTs in this process. The results of reactors with SRTs of about 10 and 30 days have shown very good effluent quality without any clogging problem for more than 4 months of operation. For the reactor with long SRT (75 days), the filter clogging was observed after about 80 days of operation and caused an increase in the operation pressure and deterioration in effluent quality on some days. Excessive abundance of filamentous bacteria was observed in the reactor with SRT of about 10 days, which had the best effluent quality. According to the FISH results, type 021N was predominant in the reactor with long SRT, which had the clogging problem. On the other hand, other reactors (with SRTs of about 10 and 30 days) did not contain much type 021N, but some other filamentous bacteria dominated. Maximum EPS concentration (as mg/L) was observed in the reactor with long SRT. Also the abundance of two types of metazoa (Pristina sp. and tardigrades) was observed in the reactor with long SRT, which had the clogging problem and poor effluent quality.


1997 ◽  
Vol 36 (11) ◽  
pp. 163-170 ◽  
Author(s):  
Yoshio Sakai ◽  
Tetsuro Fukase ◽  
Hidenari Yasui ◽  
Masahide Shibata

An activated sludge process which produces no excess sludge was developed. The process is very simple as a small amount of return sludge is ozonated and then returned to the aeration tank. The ozonation enhances biodegradability of activated sludge, which is biologically oxidized in the aeration tank. A full-scale plant for treating 450m3/d of municipal wastewater was constructed and has been operated successfully for 9 months. The amount of excess sludge eliminated is directly proportional to the amount of ozone dosed to the sludge. At the ozone dosing rate of 0.034 kg/kg-SS, complete elimination of excess sludge has been achieved when 4 times more amount of sludge is ozonated than that of the excess sludge expected in the treatment without ozonation. After 5 months of operation without any withdrawal of excess sludge, small amount of inorganic substances like sand and silt accumulated in the sludge. On the other hand, inert organic substances does not seem to accumulate. As for effluent quality, BOD and nitrogen were kept good. Although effluent SS was 2–15 mg/l higher compared to a control without ozonation, it has been well below the discharge limit.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 9-17 ◽  
Author(s):  
F. Germirli Babuna ◽  
D. Orhon ◽  
E. Ubay Çokgör ◽  
G. Insel ◽  
B. Yaprakli

A comprehensive evaluation of four different textile wastewaters was carried out to set the experimental basis for the modelling of activated sludge process. Experiments involved beside conventional characterization, detailed COD fractionation and assessment of major kinetic and stoichiometric coefficients by means of respirometric measurements. A multi-component model based on the endogenous decay concept was used for the kinetic interpretation and design of activated sludge. The fate and variation of major process components affecting effluent quality with the sludge age were evaluated by means of model simulations.


2021 ◽  
Vol 8 (3) ◽  
pp. 2829-2836
Author(s):  
Mohamed N Ali ◽  
Mohammed S Fahmy ◽  
Rehab M Elhefny

Due to the large amounts of freshwater consumed in Egypt by the agricultural sector that is more than 85% of Egypt share of freshwater in addition to the high concentrations of salts, chemicals and nutrients produced from fertilizers. Reduction of these pollutants concentrations to an acceptable level and breaking the sedimentation stability of colloidal substances and organic particles for reuse for irrigation purposes was associated with the application of biological treatment with coagulants addition. The flocculation process was performed by using polydiallyldimethylammonium chloride (polyDADMAC) and polyacrylamide grafted oatmeal (OAT-g-PAM). The scale-pilot consists of an aeration tank equipped with an air blower, sedimentation tank followed by a filtration stage through 20 cm of pottery scrubs media. To study the performance of synthetic and grafted polymeric flocculants, 3 trials were performed. Activated sludge process without adding any polymeric flocculants was the control trial. In the second trial, polyDADMAC was added with a dose of 5 mg/l. Finally, OAT-g-PAM with a dose of 1.25 mg/l was used in the third trial. The physicochemical properties of agricultural wastewater were measured at the national research center in Cairo. It was found that OAT-g-PAM incorporated with activated sludge process was the most effective in treating agricultural wastewater as it achieved COD, BOD,TKN, TP, and TSS removal efficiency up to 92.29%, 93.13%, 90.64%, 90.46%, and 92.5%, respectively which made it suitable to reuse for agricultural purposes, in addition to its ability to biodegrade, environmentally friendly, and low dosage required compared to polyDADMAC.


1990 ◽  
Vol 22 (9) ◽  
pp. 249-254 ◽  
Author(s):  
F. Dilek Çetin ◽  
Gülerman Sürücü

In efficient and economical treatment of wastewaters,the settleability of activated sludge is of prime importance. Efficient settlement in the secondary sedimentation tank is required, both to keep the desired effluent quality and to sustain the necessary amount of microorganisms in the aeration tank. On the other hand, the settleability of microorganisms in the secondary clarifier is very dependent on the physiological and biochemical nature of activated sludge flocs, which are determined by the conditions of the aeration tank. In this research, effects of temperature and pH of aeration basin on settleability of activated sludge were studied. Settleability was measured by zone settling velocity and sludge volume index (SVI). Five different temperatures and four different pH values were operated in the aeration basin. It was found that the settleability of activated sludge is greatly affected by these two parameters.


Sign in / Sign up

Export Citation Format

Share Document