microbial population dynamics
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 30)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jann Paul Mattern ◽  
Kristof Glauninger ◽  
Gregory L Britten ◽  
John Casey ◽  
Sangwon Hyun ◽  
...  

The rates of cell growth, division, and carbon loss of microbial populations are key parameters for understanding how organisms interact with their environment and how they contribute to the carbon cycle. However, the invasive nature of current analytical methods has hindered efforts to reliably quantify these parameters. In recent years, size-structured matrix population models (MPMs) have gained popularity for estimating rate parameters of microbial populations by mechanistically describing changes in microbial cell size distributions over time. And yet, the construction, analysis, and biological interpretation of these models are underdeveloped, as current implementations do not adequately constrain or assess the biological feasibility of parameter values, leading to inference which may provide a good fit to observed size distributions but does not necessarily reflect realistic physiological dynamics. Here we present a flexible Bayesian extension of size-structured MPMs for testing underlying assumptions describing the dynamics of a marine phytoplankton population over the day-night cycle. Our Bayesian framework takes prior scientific knowledge into account and generates biologically interpretable results. Using data from an exponentially growing laboratory culture of the cyanobacterium Prochlorococcus, we herein demonstrate the performance improvements of our approach over current models and isolate previously ignored biological processes, such as respiratory and exudative carbon losses, as critical parameters for the modeling of microbial population dynamics. The results demonstrate that this modeling framework can provide deeper insights into microbial population dynamics provided by flow-cytometry time-series data.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 97
Author(s):  
Cristian Varela ◽  
Kathleen Cuijvers ◽  
Steven Van Den Heuvel ◽  
Mark Rullo ◽  
Mark Solomon ◽  
...  

Uninoculated wines are regarded as having improved mouthfeel and texture and more complex flavor profiles when compared to wines inoculated with commercial S. cerevisiae strains. Uninoculated fermentation involves a complex microbial succession of yeasts and bacteria during fermentation. Microbial population dynamics are affected by several factors that can ultimately determine if a particular species or strain contributes to wine aroma and flavor. In this work, we have studied the effect of aeration, a common winemaking practice, on the yeast microbiota during uninoculated Chardonnay wine fermentation. The timing of aeration and then aeration intensity were evaluated across two successive vintages. While the timing of aeration significantly impacted fermentation efficiency across oxygen treatments, different levels of aeration intensity only differed when compared to the non-aerated control ferments. Air addition increased the viable cell population size of yeast from the genera Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in both vintages. While in 2019, a high relative abundance was found for Hanseniaspora species in aerated ferments, in 2020, T. delbrueckii was visibly more abundant than other species in response to aeration. Accompanying the observed differences in yeast community structure, the chemical profile of the finished wines was also different across the various aeration treatments. However, excessive aeration resulted in elevated concentrations of ethyl acetate and acetic acid, which would likely have a detrimental effect on wine quality. This work demonstrates the role of aeration in shaping yeast population dynamics and modulating a volatile profile in uninoculated wines, and highlights the need for careful air addition to avoid a negative sensory impact on wine flavor and aroma.


2021 ◽  
Author(s):  
Karthik Hullahalli ◽  
Justin R. Pritchard ◽  
Matthew K. Waldor

AbstractPathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering pathogen population dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult due to the fact that measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-Based analysis of Microbial Population dynamics). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP that accounts for such population expansions. Using data from systemic infection of barcoded Extraintestinal Pathogenic E. coli we show that this new framework along with the metrics it yields enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent, barcoded Pseudomonas aeruginosa dataset, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan), when coupled with barcoded datasets, enables a more complete assessment of within-host bacterial population dynamics.ImportanceBarcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts, and may have additional barcode-based applications beyond host-microbe interactions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sonia Mion ◽  
Nathan Carriot ◽  
Julien Lopez ◽  
Laure Plener ◽  
Annick Ortalo-Magné ◽  
...  

AbstractQuorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum and a Gram-positive bacterium (Bacillus cereus), a yeast (Saccharomyces cerevisiae), immune cells (murine macrophages), and an animal model (planarian Schmidtea mediterranea). These results underscored that AHL-based QS plays a key role in the capacity of C. violaceum to interact with micro- and macroorganisms and that quorum quenching can affect microbial population dynamics beyond AHL-producing bacteria and Gram-negative bacteria.


2021 ◽  
Author(s):  
Sean R. Anderson ◽  
Margot Chisholm ◽  
Elizabeth L. Harvey

SummaryTemperature is a universal driver of microbial life, with rising sea surface temperatures expected to differentially influence the physiology, biodiversity, and distribution of bacteria and plankton. The impact of ocean warming on microbial interactions remains unclear, despite the importance of these relationships for ecosystem functioning. We employed weekly to monthly 18S and 16S rRNA gene amplicon metabarcoding over a full year (33 d) in a subtropical estuary, investigating microbial population dynamics and network interactions with respect to a temperature gradient (9–31°C). Certain microbes (e.g., Acidimicrobiia, Nitrososphaeria, and Syndiniales) increased in relative abundance with rising temperatures (Spearman ρ > 0.69), whereas other groups (e.g., Alpha- and Gammaproteobacteria, Bacillariophyta, and Dinophyceae) slightly decreased, became saturated, or remained stable. With network analysis, we observed an increase in 18S– 18S interactions in warm (23–31°C) vs. cold (<23°C) temperatures, largely involving Syndiniales, Bacillariophyta, and Dinophyceae ASVs. Bacteria ASVs were more connected to other microbes (higher degree and centrality) and became more prominent in the cold network, highlighted by well-established cross-domain relationships (e.g., diatom–bacteria) and positive interactions among bacteria (e.g., SAR11 and Rhodobacterales). These efforts highlight the types of interactions that may be more common under changing temperatures, with implications for modeling biogeochemistry and assessing ecosystem health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Polina Beskrovnaya ◽  
Danielle L. Sexton ◽  
Mona Golmohammadzadeh ◽  
Ameena Hashimi ◽  
Elitza I. Tocheva

Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.


Sign in / Sign up

Export Citation Format

Share Document