Molecular characterization of bacteria inhabiting a water distribution system simulator

2003 ◽  
Vol 47 (5) ◽  
pp. 149-154 ◽  
Author(s):  
J.W. Santo Domingo ◽  
M.C. Meckes ◽  
J.M. Simpson ◽  
B. Sloss ◽  
D.J. Reasoner

The objective of this study was to monitor the impact of chlorination and chloramination treatments on heterotrophic bacteria (HB) and ammonia-oxidizing bacteria (AOB) inhabiting a water distribution system simulator. HB densities decreased while AOB densities increased when chloramine was added. AOB densities decreased below detection limits after the disinfection treatment was switched back to chlorination. The presence of AOB was confirmed using a group-specific 16S rDNA-PCR method. 16S rDNA sequence analysis showed that most bacterial isolates from feed water, discharge water, and biofilm samples were α-Proteobacteria or β-Proteobacteria. The latter bacterial groups were also numerically dominant among the sequences recovered from water and biofilm 16S rDNA clone libraries. The relative frequency of each culturable bacterial group was different for each sample examined. Denaturing gradient gel electrophoresis analysis of total community 16S rDNA genes showed notable differences between the microbial community structure of biofilm samples and feed water. The results of this study suggest that disinfection treatments could influence the type of bacterial community inhabiting water distribution systems.

2013 ◽  
Vol 23 (3) ◽  
pp. 571-585 ◽  
Author(s):  
Krzysztof Arminski ◽  
Tomasz Zubowicz ◽  
Mietek A. Brdys

Abstract Drinking Water Distribution Systems (DWDSs) play a key role in sustainable development of modern society. They are classified as critical infrastructure systems. This imposes a large set of highly demanding requirements on the DWDS operation and requires dedicated algorithms for on-line monitoring and control to tackle related problems. Requirements on DWDS availability restrict the usability of the real plant in the design phase. Thus, a proper model is crucial. Within this paper a DWDS multi-species quality model for simulation and design is derived. The model is composed of multiple highly inter-connected modules which are introduced to represent chemical and biological species and (above all) their interactions. The chemical part includes the processes of chloramine decay with additional bromine catalysis and reaction with nitrogen compounds. The biological part consists of both heterotrophic and chemo-autotrophic bacteria species. The heterotrophic bacteria are assumed to consume assimilable organic carbon. Autotrophs are ammonia oxidizing bacteria and nitrite oxidizing bacteria species which are responsible for nitrification processes. Moreover, Disinfection By-Products (DBPs) are also considered. Two numerical examples illustrate the derived model’s behaviour in normal and disturbance operational states.


2011 ◽  
Vol 14 (2) ◽  
pp. 345-365 ◽  
Author(s):  
S. Alvisi ◽  
M. Franchini ◽  
M. Gavanelli ◽  
M. Nonato

This paper proposes an innovative procedure for identifying, in the event of accidental or intentional contamination of a water distribution system, the optimal scheduling of activation of a pre-selected set of flow control devices which will serve to minimise the volume of contaminated water consumed by users after the detection of the contaminant in the system. The constraints are represented by the number of available response teams and the maximum speed at which these teams can travel along the roadway. The optimal scheduling of device activation is sought by means of an optimisation process based on a genetic algorithm (GA) which interacts with a mixed integer linear programming (MILP) solver in order to ensure the feasibility of the scheduling identified. The optimisation procedure is coupled to a hydraulic and quality simulator, which enables a calculation of the volumes of contaminated water consumed by users, and a dynamic cache memory, which, by storing information on the system's behaviour as the optimisation process progresses, serves to limit the computational times. The application of the procedure to a highly complex real water distribution system shows that the optimisation process is robust and efficacious and produces a smaller volume of contaminated water consumed by the users than when the activation of all the devices was completed in the shortest amount of time.


2013 ◽  
Vol 15 (3) ◽  
pp. 1042-1058 ◽  
Author(s):  
Fanlin Meng ◽  
Shuming Liu ◽  
Avi Ostfeld ◽  
Chao Chen ◽  
Alejandra Burchard-Levine

Previous studies on booster disinfection optimization were commonly based on ‘blank networks’, neglecting the impact of existing disinfection facilities, which could result in misleading solutions. To overcome this limitation, a method, which incorporates the existing disinfection facilities, is developed and demonstrated in this study. A particle backtracking algorithm, which traces the upstream pathways of the disinfection insufficiency nodes, is employed to narrow down the potential positions for booster stations. Deterministic optimization results are then efficiently yielded by the introduction of a ‘coverage matrix’. The proposed method is applied to a real life water distribution system in Beijing, China. Results show the methodology effectiveness in optimizing booster disinfection placement and operation for real life water distribution systems. For the explored case study, results suggest that adding a booster disinfection station at 0.1% of the nodes of the system can satisfy chlorine residual at about 97.5% of all nodes.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


2005 ◽  
Vol 14 (6) ◽  
pp. 487-493 ◽  
Author(s):  
Bilge Hapcioglu ◽  
Yildiz Yegenoglu ◽  
Zayre Erturan ◽  
Yasar Nakipoglu ◽  
Halim Issever

2004 ◽  
Vol 2 (3) ◽  
pp. 137-156 ◽  
Author(s):  
M. M. Aral ◽  
J. Guan ◽  
M. L. Maslia ◽  
J. B. Sautner ◽  
R. E. Gillig ◽  
...  

In a recently completed case-control epidemiological study, the New Jersey Department of Health and Senior Services (NJDHSS) with support from the Agency for Toxic Substances and Disease Registry (ATSDR) documented an association between prenatal exposure to a specific contaminated community water source and leukaemia in female children. An important and necessary step in the epidemiological study was the reconstruction of the historical water supply strategy of the water distribution system serving the Dover Township area, New Jersey. The sensitivity of solutions to: (1) pressure and pattern factor constraints, (2) allowable operational extremes of water levels in the storage tanks, and (3) the non-uniqueness of the water supply solution are analysed in detail. The computational results show that the proposed approach yields satisfactory results for the complete set of monthly simulations and sensitivity analyses, providing a consistent approach for identifying the historical water supply strategy of the water distribution system. Sensitivity analyses indicated that the alternative strategy obtained from the revised objective function and the variation of constraints did not yield significantly different water supply characteristics. The overall analysis demonstrates that the progressive optimality genetic algorithm (POGA) developed to solve the optimization problem is an effective and efficient algorithm for the reconstruction of water supply strategies in water distribution systems.


2013 ◽  
Vol 59 (3) ◽  
pp. 183-188 ◽  
Author(s):  
V.M. Siqueira ◽  
H.M.B. Oliveira ◽  
C. Santos ◽  
R.R.M. Paterson ◽  
N.B. Gusmão ◽  
...  

Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4′,6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.


2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1591 ◽  
Author(s):  
Bałut ◽  
Brodziak ◽  
Bylka ◽  
Zakrzewski

: On the maintenance task list of each water distribution system (WDS) operator, determination of the order of undertaken repairs seems quite a typical task. Characteristics of damages, their localization, and other factors that influence repair sequencing have a sound impact on the execution of such tasks. In the case of the most complex cases where numerous failures of different types occur at the very same time (i.e., due to earthquakes), there is a long list of selection criteria that have to be analyzed to deliver an objectively logical schedule for repair teams. In this article, authors attempt to find out if it is possible to define pipe rankings in having obtained the best factors for defined objective functions (criteria), making it feasible to deliver judicious repair sequencing. For the purposes of this paper, a survey has been carried out. Its conclusions made it possible to propose a method to create rankings of pipes and evaluate them using a selected multicriteria decision method: preference ranking organization method for enrichment evaluation (PROMETHEE). The work was carried out for five different disaster scenarios that had been supplied by ‘The Battle of Post-Disaster Response and Restoration’ organization committee. Obtained results might be further used to finetune this sequencing method of undertaken repairs, while conclusions could be useful to model similar events in WDS when required. This article is an extended paper based on the conference preprint presented at the 1st International Water Distribution Systems Analysis (WDSA)/International Computing & Control for the Water Industry (CCWI) Joint Conference in July 23–25, 2018 in Kingston, Ontario, Canada.


Sign in / Sign up

Export Citation Format

Share Document