scholarly journals Management of water distribution systems in PDA conditions using isolation valves: case studies of real networks

2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.

2010 ◽  
Vol 10 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. Diao ◽  
M. Barjenbruch ◽  
U. Bracklow

This paper aims to explore the impacts of peaking factors on a water distribution system designed for a small city in Germany through model-based analysis. As a case study, the water distribution network was modelled by EPANET and then two specific studies were carried out. The first study tested corresponding system-wide influences on water age and energy consumption if the peaking factors used at design stage are inconsistent with ones in real situation. The second study inspected the possible relationship between the choice of peaking factors and budgets by comparing several different pipe configurations of the distribution system, obtained according to variety of peaking factors. Given the analysis results, the first study reveals that average water age will increase if peaking factors estimated at design stage are larger than real values in that specific system, and vice versa. In contrast, energy consumption will increase if peaking factors defined for system design are smaller than ones in real case, and vice versa. According to the second study, it might be possible to amplify peaking factors for design dramatically by a slight increase in the investment on this system. However, further study on budget estimation with more factors and detailed information considered should be carried out.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 672 ◽  
Author(s):  
Attilio Fiorini Morosini ◽  
Olga Caruso ◽  
Paolo Veltri

The correct management of Water Distribution Networks (WDNs) allows to obtain a reliable system. When a pipe failure occurs in a network and it is necessary to isolate a zone, it is possible that some nodes do not guarantee service for the users due to inadequate heads. In these conditions a Pressure Driven Analysis (PDA) is the correct approach to evaluate network behavior. This analysis is more appropriate than the Demand Driven Analysis (DDA) because it is known that the effective delivered flow at each node is influenced by the pressure value. In this case, it is important to identify a subset of isolation valves to limit disrupting services in the network. For a real network, additional valves must be added to existing ones. In this paper a new methodological analysis is proposed: it defines an objective function (OF) to provide a measure of the system correct functioning. The network analysis using the OF helps to choose the optimal number of additional valves to obtain an adequate system control. In emergency conditions, the OF takes into account the new network topology obtained excluding the zone where the broken pipe is located. OF values depend on the demand deficit caused by the head decrement in the network nodes for each pipe burst considered. The results obtained for a case study confirm the efficiency of the methodology.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6221
Author(s):  
Jedrzej Bylka ◽  
Tomasz Mróz

The water supply system is one of the most important elements in a city. Currently, many cities struggle with a water deficit problem. Water is a commonly available resource and constitutes the majority of land cover; however, its quality, in many cases, makes it impossible to use as drinking water. To treat and distribute water, it is necessary to supply a certain amount of energy to the system. An important goal of water utility operators is to assess the energy efficiency of the processes and components. Energy assessments are usually limited to the calculation of energy dissipation (sometimes called “energy loss”). From a physical point of view, the formulation of “energy loss” is incorrect; energy in water transport systems is not consumed but only transformed (dissipated) into other, less usable forms. In the water supply process, the quality of energy—exergy (ability to convert into another form)—is consumed; hence, a new evaluation approach is needed. The motivation for this study was the fact that there are no tools for exergy evaluation of water distribution systems. A model of the exergy balances for a water distribution system was proposed, which was tested for the selected case studies of a water supply system and a water treatment station. The tool developed allows us to identify the places with the highest exergy destructions. In the analysed case studies, the highest exergy destruction results from excess pressure (3939 kWh in a water supply system and 1082 kWh in a water treatment plant). The exergy analysis is more accurate for assessing the system compared to the commonly used energy-based methods. The result can be used for assessing and planning water supply system modernisation.


2021 ◽  
Vol 2139 (1) ◽  
pp. 012013
Author(s):  
C A Bonilla-Granados ◽  
N J Cely-Calixto ◽  
G A Carrillo Soto

Abstract Drinking-water distribution systems are generally designed with methodologies based on trial-and-error tests, which generate feasible results. However, these trials are not the most economical and reliable solution since they do not consider the optimization of the network. For the present work, the hydraulic model of the drinking water distribution network of San José de Cúcuta, Colombia, was optimized by applying the concept of resilience rate and minimum cost. The development of the work consisted of the hydraulic modeling of the physical components of the network in EPANET software, as well as the application of calculations of the connectivity coefficient and the unitary power of each section. With the data obtained from the modeling and calculations, the physical parameters were optimized, and the cost-benefit ratio was estimated. It was found that the current drinking water distribution system does not have a power surplus to overcome a system failure. The optimization increased the total energy surplus of the network (261%) and the resilience rate (585%). Also, the connectivity coefficient was improved with an average value of 0.95. The hydraulic optimization methodology applied resulted in a network resilient to system failures.


2009 ◽  
Vol 36 (11) ◽  
pp. 1764-1772 ◽  
Author(s):  
Hailiang Shen ◽  
Edward A. McBean ◽  
Mirnader Ghazali

A multi-stage response procedure for identifying possible ingress nodes (PINs) and quantifying the likelihood that a PIN in a given water distribution system is the actual point of ingress is described. The procedure uses data mining to successively decrease the number of PINs based on a pre-constructed database. In each stage, query sentences are executed to locate the PINs and a Euclidean distance is proposed to estimate the probability, to allow the identification of locations with the highest probabilities of being the true ingress location. As demonstrated in a case study, the ranges of PINs are reduced in the 1st, 2nd, and 3rd stages; except the first sensor alarm, the Euclidean distance metric can identify the true ingress node with the program run-time of less than 2 min; the multi-stage procedure saves roughly 3 h in identifying the true ingress node after the second sensor alarm, instead of waiting for a third sensor alarm to provide the location information. The multi-stage response procedure is shown to be an effective and efficient way for identification and probability quantification of PINs.


2014 ◽  
Vol 13 (1) ◽  
pp. 203-209 ◽  
Author(s):  
Vali Alipour ◽  
Kavoos Dindarloo ◽  
Amir Hossein Mahvi ◽  
Leila Rezaei

Corrosion and scaling is a major problem in water distribution systems, thus evaluation of water corrosivity properties is a routine test in water networks. To evaluate water stability in the Bandar Abbas water distribution system, the network was divided into 15 clusters and 45 samples were taken. Langelier, Ryznar, Puckorius, Larson–Skold (LS) and Aggressive indices were determined and compared to the marble test. The mean parameters included were pH (7.8 ± 0.1), electrical conductivity (1,083.9 ± 108.7 μS/cm), total dissolved solids (595.7 ± 54.7 mg/L), Cl (203.5 ± 18.7 mg/L), SO4 (174.7 ± 16.0 mg/L), alkalinity (134.5 ± 9.7 mg/L), total hardness (156.5 ± 9.3 mg/L), HCO3 (137.4 ± 13.0 mg/L) and calcium hardness (71.8 ± 4.3 mg/L). According to the Ryznar, Puckorius and Aggressive Indices, all samples were stable; based on the Langelier Index, 73% of samples were slightly corrosive and the rest were scale forming; according to the LS index, all samples were corrosive. Marble test results showed tested water of all 15 clusters tended to scale formation. Water in Bandar Abbas is slightly scale forming. The most appropriate indices for the network conditions are the Aggressive, Puckorius and Ryznar indices that were consistent with the marble test.


2021 ◽  
Vol 11 (3) ◽  
pp. 55-63
Author(s):  
Osama Khasraw Mohammed Amin ◽  
Mohammad Zaher Akkad ◽  
Tamás Bányai

Water distribution system (WDS) aims to distribute water from reservoirs or aqueducts to the end-users. This system is part of the water supply network that carries potable water from a central treatment plant or wells to water consumers in order to deliver water sufficiently to meet residential, commercial, industrial, and firefighting requirements. Modern systems aim to solve water distribution systems management problems, such as the lowest cost, and most efficient design by using linear/nonlinear optimization schemes, which are limited by the system size, the number of constraints, and the number of loading conditions. After a literature review for the articles that dealt with this topic, designing two parts of the water distribution system is discussed as a case study in Erbil. Pumps and storage tanks, while optimizing the water distribution system by minimizing the project cost through minimizing the volume of the elevated tank according to the pump working hours.


2021 ◽  
Author(s):  
Tarekegn Kuma ◽  
Brook Abate Getahun

Abstract Understanding water distribution system hydraulic performance is crucial for a water supply system management. A case study was conducted evaluating the hydraulic performance of water distribution system of Tulu Bolo town. The hydraulic model of water distribution network was developed using GIS integrated with WaterGEMS hydraulic model. The implementation of the integrated system verified that water to regulate the pressure and velocity in order to sustain. According to the analysis, about 92.6% of nodes have optimized pressure ranged between 15m to 70m and about 1.27% is under permissible pressure. Model calibration was performed by comparing simulated data with field data, the result of pressure calibration has a linear correlation coefficient of 0.93 and the hydraulic model in WaterGEMS was calibrated and optimized with a field data.


2013 ◽  
Vol 15 (3) ◽  
pp. 1042-1058 ◽  
Author(s):  
Fanlin Meng ◽  
Shuming Liu ◽  
Avi Ostfeld ◽  
Chao Chen ◽  
Alejandra Burchard-Levine

Previous studies on booster disinfection optimization were commonly based on ‘blank networks’, neglecting the impact of existing disinfection facilities, which could result in misleading solutions. To overcome this limitation, a method, which incorporates the existing disinfection facilities, is developed and demonstrated in this study. A particle backtracking algorithm, which traces the upstream pathways of the disinfection insufficiency nodes, is employed to narrow down the potential positions for booster stations. Deterministic optimization results are then efficiently yielded by the introduction of a ‘coverage matrix’. The proposed method is applied to a real life water distribution system in Beijing, China. Results show the methodology effectiveness in optimizing booster disinfection placement and operation for real life water distribution systems. For the explored case study, results suggest that adding a booster disinfection station at 0.1% of the nodes of the system can satisfy chlorine residual at about 97.5% of all nodes.


2011 ◽  
Vol 60 (5) ◽  
pp. 286-293 ◽  
Author(s):  
Hailiang Shen ◽  
Edward McBean

With increasing interest in the implementation/functionality of a contaminant warning system for water distribution systems, questions exist over the application to a real distribution system. A methodology is described to assess the impacts of changes in the numbers of sensors, on the time delay required to detect a contaminant intrusion event and to maximize sensor detection redundancy as protection against false positives. The methodology is used to explore the point of diminishing marginal return of detection likelihood, and the average time delay of detected intrusion events. Pareto front performance improvement with increasing numbers of sensors (from 2 through 50) is characterized through a case study application to the City of Guelph water distribution system (WDS). The results provide a methodology for utilities to employ for decisions on the number of sensors to use for a system. Within the two scenarios applied, five and four sensors are shown to be the point of diminishing marginal return for Guelph WDS in terms of the Pareto front performance improvement, detection likelihood, and the average time delay for the case study. Nevertheless, given that the timeframe to detect a contamination event may be lengthy, placing more sensors than the point of diminishing marginal return may be appropriate.


Sign in / Sign up

Export Citation Format

Share Document