Respirometric measurement of kinetic parameters: effect of activated sludge floc size

2003 ◽  
Vol 48 (8) ◽  
pp. 61-68 ◽  
Author(s):  
K.H. Chu ◽  
H.M. van Veldhuizen ◽  
M.C.M. van Loosdrecht

The variation of activated sludge floc size with the mixing intensity of a mechanically stirred respirometer, expressed in terms of the mean energy dissipation rate, was characterized using a photometric dispersion analyzer. The floc size decreased rapidly when the energy dissipation rate was increased from 1.33 × 10-3 to 2.68 × 10-3 W/kg. Experiments were performed to investigate the effect of floc size on the oxygen saturation coefficient measured under the condition of acetate oxidation. The respirometric data were interpreted by considering only the kinetics of biochemical reactions. The variation of the oxygen saturation coefficient with mixing intensity was found to correlate with the variation of floc size with mixing intensity. The oxygen saturation coefficient was found to decrease from 0.23 to 0.08 mg/L when the mean energy dissipation rate was increased from 1.33 × 10-3 to 2.68 × 10-3 W/kg. The dependence of the oxygen saturation coefficient on floc size or mixing intensity suggests the presence of mass transfer resistances in large flocs.

2015 ◽  
Vol 777 ◽  
pp. 151-177 ◽  
Author(s):  
S. L. Tang ◽  
R. A. Antonia ◽  
L. Djenidi ◽  
H. Abe ◽  
T. Zhou ◽  
...  

The transport equation for the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}$ along the centreline of a fully developed channel flow is derived by applying the limit at small separations to the two-point budget equation. Since the ratio of the isotropic energy dissipation rate to the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}_{iso}/\overline{{\it\epsilon}}$ is sufficiently close to 1 on the centreline, our main focus is on the isotropic form of the transport equation. It is found that the imbalance between the production of $\overline{{\it\epsilon}}$ due to vortex stretching and the destruction of $\overline{{\it\epsilon}}$ caused by the action of viscosity is governed by the diffusion of $\overline{{\it\epsilon}}$ by the wall-normal velocity fluctuation. This imbalance is intrinsically different from the advection-driven imbalance in decaying-type flows, such as grid turbulence, jets and wakes. In effect, the different types of imbalance represent different constraints on the relation between the skewness of the longitudinal velocity derivative $S_{1,1}$ and the destruction coefficient $G$ of enstrophy in different flows, thus resulting in non-universal approaches of $S_{1,1}$ towards a constant value as the Taylor microscale Reynolds number, $R_{{\it\lambda}}$, increases. For example, the approach is slower for the measured values of $S_{1,1}$ along either the channel or pipe centreline than along the axis in the self-preserving region of a round jet. The data for $S_{1,1}$ collected in different flows strongly suggest that, in each flow, the magnitude of $S_{1,1}$ is bounded, the value being slightly larger than 0.5.


1998 ◽  
Vol 374 ◽  
pp. 29-57 ◽  
Author(s):  
R. A. ANTONIA ◽  
T. ZHOU ◽  
Y. ZHU

All components of the fluctuating vorticity vector have been measured in decaying grid turbulence using a vorticity probe of relatively simple geometry (four X-probes, i.e. a total of eight hot wires). The data indicate that local isotropy is more closely satisfied than global isotropy, the r.m.s. vorticities being more nearly equal than the r.m.s. velocities. Two checks indicate that the performance of the probe is satisfactory. Firstly, the fully measured mean energy dissipation rate 〈ε〉 is in good agreement with the value inferred from the rate of decay of the mean turbulent energy 〈q2〉 in the quasi-homogeneous region; the isotropic mean energy dissipation rate 〈εiso〉 agrees closely with this value even though individual elements of 〈ε〉 indicate departures from isotropy. Secondly, the measured decay rate of the mean-square vorticity 〈ω2〉 is consistent with that of 〈q2〉 and in reasonable agreement with the isotropic form of the transport equation for 〈ω2〉. Although 〈ε〉≃〈εiso〉, there are discernible differences between the statistics of ε and εiso; in particular, εiso is poorly correlated with either ε or ω2. The behaviour of velocity increments has been examined over a narrow range of separations for which the third-order longitudinal velocity structure function is approximately linear. In this range, transverse velocity increments show larger departures than longitudinal increments from predictions of Kolmogorov (1941). The data indicate that this discrepancy is only partly associated with differences between statistics of locally averaged ε and ω2, the latter remaining more intermittent than the former across this range. It is more likely caused by a departure from isotropy due to the small value of Rλ, the Taylor microscale Reynolds number, in this experiment.


2018 ◽  
Vol 75 (10) ◽  
pp. 3469-3487 ◽  
Author(s):  
Xiang-Yu Li ◽  
Axel Brandenburg ◽  
Gunilla Svensson ◽  
Nils E. L. Haugen ◽  
Bernhard Mehlig ◽  
...  

We investigate the effect of turbulence on the collisional growth of micrometer-sized droplets through high-resolution numerical simulations with well-resolved Kolmogorov scales, assuming a collision and coalescence efficiency of unity. The droplet dynamics and collisions are approximated using a superparticle approach. In the absence of gravity, we show that the time evolution of the shape of the droplet-size distribution due to turbulence-induced collisions depends strongly on the turbulent energy-dissipation rate [Formula: see text], but only weakly on the Reynolds number. This can be explained through the [Formula: see text] dependence of the mean collision rate described by the Saffman–Turner collision model. Consistent with the Saffman–Turner collision model and its extensions, the collision rate increases as [Formula: see text] even when coalescence is invoked. The size distribution exhibits power-law behavior with a slope of −3.7 from a maximum at approximately 10 up to about 40 μm. When gravity is invoked, turbulence is found to dominate the time evolution of an initially monodisperse droplet distribution at early times. At later times, however, gravity takes over and dominates the collisional growth. We find that the formation of large droplets is very sensitive to the turbulent energy dissipation rate. This is because turbulence enhances the collisional growth between similar-sized droplets at the early stage of raindrop formation. The mean collision rate grows exponentially, which is consistent with the theoretical prediction of the continuous collisional growth even when turbulence-generated collisions are invoked. This consistency only reflects the mean effect of turbulence on collisional growth.


2014 ◽  
Vol 747 ◽  
pp. 288-315 ◽  
Author(s):  
L. Djenidi ◽  
R. A. Antonia

AbstractA direct numerical simulation (DNS) based on the lattice Boltzmann method (LBM) is carried out in low-Reynolds-number grid turbulence to analyse the mean turbulent kinetic energy dissipation rate, $\overline{\epsilon }$, and its transport equation during decay. All the components of $\overline{\epsilon }$ and its transport equation terms are computed, providing for the first time the opportunity to assess the contribution of each term to the decay. The results indicate that although small departures from isotropy are observed in the components of $\overline{\epsilon }$ and its destruction term, there is sufficient compensation among the components for these two quantities to satisfy isotropy to a close approximation. A short distance downstream of the grid, the transport equation of $\overline{\epsilon }$ simplifies to its high-Reynolds-number homogeneous and isotropic form. The decay rate of $\overline{\epsilon }$ is governed by the imbalance between the production due to vortex stretching and the destruction caused by the action of viscosity, the latter becoming larger than the former as the distance from the grid increases. This imbalance, which is not constant during the decay as argued by Batchelor & Townsend (Proc. R. Soc. Lond. A, vol. 190, 1947, pp. 534–550), varies according to a power law of $x$, the distance downstream of the grid. The non-constancy implies a lack of dynamical similarity in the mechanisms controlling the transport of $\overline{\epsilon }$. This is consistent with the fact that the power-law-decay ($\overline{q^2} \sim x^n$) exponent $n$ is not equal to $-$1. It is actually close to $-$1.6, a value in keeping with the relatively low Reynolds number of the simulation. These results highlight the importance of the imbalance in establishing the value of $n$. The $\overline{\epsilon }$-transport equation is also analysed in relation to the power-law decay. The results show that the power-law exponent $n$ is controlled by the imbalance between production and destruction. Further, a relatively straightforward analysis provides information on the behaviour of $n$ during the entire decay process and an interesting theoretical result, which is yet to be confirmed, when $R_{\lambda } \rightarrow 0 $, namely, the destruction coefficient $G$ is constant and its value must lie between $15/7$ and $30/7$. These two limits encompass the predictions for the final period of decay by Batchelor & Townsend (1947) and Saffman (J. Fluid Mech., vol. 27, 1967, pp. 581–593).


2016 ◽  
Vol 798 ◽  
pp. 140-164 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integrals of the mean and turbulent energy dissipation rates are examined using direct numerical simulation (DNS) databases in a turbulent channel flow. Four values of the Kármán number ($h^{+}=180$, 395, 640 and 1020;$h$is the channel half-width) are used. Particular attention is given to the functional$h^{+}$dependence by comparing existing DNS and experimental data up to$h^{+}=10^{4}$. The logarithmic$h^{+}$dependence of the integrated turbulent energy dissipation rate is established for$300\leqslant h^{+}\leqslant 10^{4}$, and is intimately linked to the logarithmic skin friction law,viz.$U_{b}^{+}=2.54\ln (h^{+})+2.41$($U_{b}$ is the bulk mean velocity). This latter relationship is established on the basis of energy balances for both the mean and turbulent kinetic energy. When$h^{+}$is smaller than 300, viscosity affects the integrals of both the mean and turbulent energy dissipation rates significantly due to the lack of distinct separation between inner and outer regions. The logarithmic$h^{+}$dependence of$U_{b}^{+}$is clarified through the scaling behaviour of the turbulent energy dissipation rate$\overline{{\it\varepsilon}}$in different parts of the flow. The overlap between inner and outer regions is readily established in the region$30/h^{+}\leqslant y/h\leqslant 0.2$for$h^{+}\geqslant 300$. At large$h^{+}$(${\geqslant}$5000) when the finite Reynolds number effect disappears, the magnitude of$\overline{{\it\varepsilon}}y/U_{{\it\tau}}^{3}$approaches 2.54 near the lower bound of the overlap region. This value is identical between the channel, pipe and boundary layer as a result of similarity in the constant stress region. As$h^{+}$becomes large, the overlap region tends to contribute exclusively to the$2.54\ln (h^{+})$dependence of the integrated turbulent energy dissipation rate. The present logarithmic$h^{+}$dependence of$U_{b}^{+}$is essentially linked to the overlap region, even at small$h^{+}$.


2002 ◽  
Vol 3 ◽  
pp. N34 ◽  
Author(s):  
R A Antonia ◽  
T Zhou ◽  
L Danaila ◽  
F Anselmet †

Sign in / Sign up

Export Citation Format

Share Document