Comparison of intermittently aerated continuous and batch biofilm reactor in nutrient removal

2004 ◽  
Vol 48 (11-12) ◽  
pp. 371-376 ◽  
Author(s):  
Ufuk Altinbaş ◽  
Izzet Öztürk

Removal efficiency of TOC ranged between 86–89% in an intermittently aerated reactor. High efficiency in TKN removal and nitrification was found at lower applied load or longer retention time such as 2 days. TKN removal and nitrification efficiency was found to be 17–96% and 35–99% respectively. Through examination and comparison of the removal efficiencies, the stability of nitrification/denitrification and the biological phosphorus removal it was found that the sequencing batch feeding system gave a higher performance in total nitrogen and phosphorus removals. In the SBR reactor, nitrogen removal efficiency was mainly controlled by organic loading. Nitrification efficiency ranged between 31–56%. Nearly complete denitrification was observed in the sequencing batch reactor.

2004 ◽  
Author(s):  
◽  
Abel Jwili Manganyi

The objective of this study was to evaluate the characteristics and treatability of process wastewater from an edible oil refining industry, which discharge its effluent into a sewer system. The main objective was to assess a laboratory scale treatment process that would produce effluent having a regulatory acceptable phosphate concentration (below 20 mgIL) prior to discharge into municipal sewer system. A single stage laboratory-scale anaerobic-aerobic sequencing batch reactor (BPR-SBR) with a total volume adjustable up to 10L was designed for biological phosphorus removal. The BPR-SBR was run at 10 days sludge age, 8 hours hydraulic retention time and organic load of ~ 0.38 kg COD/kg MLSS.d for 158 days to evaluate its performance for bio-P removal efficiency. The BPR-SBR system showed a consistent P removal efficiency of up to 78.40 %, 80.15 % COD and 72.43 % FOG reduction. The laboratory scale study has demonstrated that the SBR technology is suitable for treating wastewater from edible oil producing industry.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
H. Helness ◽  
H. Ødegaard

Experiments have been carried out with biological phosphorus removal in a sequencing batch moving bed biofilm reactor (SBMBBR) with a plastic biofilm carrier (Kaldnes) suspended in the wastewater. The aim of the research leading to this paper was to evaluate biological phosphorus removal in this type of biofilm process. Biological phosphorus removal can be achieved in a moving bed biofilm reactor operated as a sequencing batch reactor. In order to achieve good and stable phosphorus removal over time, the length of the anaerobic period should be tuned to achieve near complete removal of easily biodegradable COD in the anaerobic period. The total COD-loading rate must at the same time be kept high enough to achieve a net growth of biomass in the reactor. Use of multivariate models based on UV-absorption spectra and measurements of the redox potential show potential for control of such a process.


1994 ◽  
Vol 29 (7) ◽  
pp. 109-117 ◽  
Author(s):  
J. S. Čech ◽  
P. Hartman ◽  
M. Macek

Population dynamics of polyphosphate-accumulating bacteria (PP bacteria) was studied in a laboratory sequencing batch reactor simulating anaerobic-oxic sludge system. The competition between PP bacteria and another microorganism (“G bacteria”) for anaerobic-oxic utilization of acetate as the sole source of organic carbon was observed. The competition was found to be seriously influenced by protozoan and metazoan grazing: Predation-resistant “G bacteria” forming large compact flocs outcompeted PP bacteria. Several breakdowns of enhanced biological phosphorus removal were observed. The first one was related to the development of an euglenid flagellate Entosiphon sulcatus and attached ciliates Vorticella microstoma and V. campanula. The second system collapse was connected with a rapid proliferation of rotifers. An alternative-prey predation was thought to be a mechanism of PP bacteria elimination.


1994 ◽  
Vol 30 (6) ◽  
pp. 303-313 ◽  
Author(s):  
G. Bortone ◽  
F. Malaspina ◽  
L. Stante ◽  
A. Tilche

An Anaerobic/Anoxic Sequencing Batch Reactor (A/A SBR) with separated batch biofilm nitrification was tested for nutrient removal against a five step Anaerobic-anoxic/Oxic SBR (A/O SBR). Piggery wastewater, particularly challenging for its low COD/N ratio, was used as feed. After feeding, the A/A SBR ran under anaerobic conditions for organic carbon sequestering and phosphorus removal. A settling phase was allowed to separate an ammonia-rich supernatant to be nitrified in a external biofilm reactor. The nitrified effluent returned to the A/A SBR where nitrates were removed, being used as final electron acceptors for luxury P-uptake and organic carbon oxidation. A/A SBR showed very good N and P removal capacities with excellent sludge settling properties. On the other hand, organic carbon removal efficiency with nitrate was lower than with oxygen. Batch biofilm nitrification was very effective, with very high nitrification rates. Presence of poly-P bacteria in the A/A SBR sludge was assessed through microscopic observation and from the high cellular poly-phosphate content.


Sign in / Sign up

Export Citation Format

Share Document