Water quality modeling to evaluate BMPs in rice paddies

2006 ◽  
Vol 53 (2) ◽  
pp. 253-261 ◽  
Author(s):  
J.H. Jeon ◽  
C.G. Yoon ◽  
H.S. Hwang ◽  
K.W. Jung

A water quality model applicable to rice paddies was developed using field data from 1999–2002. Use of the Dirac delta function efficiently explained the nutrient-concentration characteristics of ponded water. The model results agreed reasonably well with the observed data. The ponded-water quality was influenced primarily by fertilization; nutrient concentration was especially high during early cultivation periods. Reducing surface drainage during the fertilization period may substantially reduce nonpoint source loading from paddies. Increased weir heights and shallow irrigation methods were evaluated by the model as practical methods for reducing nutrient loading from paddies. These methods were effective in reducing surface drainage and are suggested as “best management practices” (BMPs) if applied based on site-specific paddy conditions.

2021 ◽  
Vol 64 (6) ◽  
pp. 1835-1848
Author(s):  
Manal H. Askar ◽  
Mohamed A. Youssef ◽  
Peter A. Vadas ◽  
Dean L. Hesterberg ◽  
Aziz Amoozegar ◽  
...  

HighlightsDRAINMOD-P has been developed to simulate phosphorus (P) dynamics in drained croplands.Key hydrological and biochemical processes affecting P cycling are represented in the model.The model predicts surface and subsurface P losses as affected by weather, soil, and management factors.Abstract. High phosphorus (P) loads to streams and lakes can promote harmful algae blooms and cause water quality deterioration. Recent research has identified subsurface drainage as an important pathway for the transport of dissolved P from drained croplands to receiving surface water bodies, particularly when macropore flow contributes a considerable portion of the subsurface drainage outflow. Currently, a few models are capable of simulating P dynamics in poorly drained soils with artificial drainage systems. The objective of this study was to develop DRAINMOD-P, a field-scale, process-based model that simulates P cycling and transport in drained croplands. Processes represented in the model include atmospheric deposition, organic and inorganic fertilizer applications, plant uptake, sediment-bound and dissolved P losses in both surface runoff and subsurface drainage, tillage practices, and P mineralization and immobilization. The model predicts P losses under different management practices, climatic conditions, drainage systems, and crop rotations. The model is an extension to the nitrogen model DRAINMOD-NII, with full integration of the nitrogen and P model components. DRAINMOD-P uses the recently modified hydrology component that simulates macropore flow. A soil erosion component, based on the RUSLE approach, has been incorporated into the model to estimate sediment loss and associated particulate P loss. Sediment deposition in tile drains is considered to quantify particulate P settling in the drainage system. In this article, we review the approaches used in DRAINMOD-P for simulating P-related processes. Model testing against field-measured data from a subsurface-drained field in northwest Ohio is presented in a companion article. Keywords: Best management practices, Phosphorus model, Phosphorus processes, Soil erosion, Water quality modeling.


<em>Abstract</em>.—A CE-QUAL-W2 water quality model was used to characterize the availability of striped bass <em>Morone saxatilis</em> habitat in Lake Greenwood, South Carolina, during 2004 and 2005. Although the lake has a productive fishery, water quality and aquatic habitat are affected by nutrient loading, algal blooms, and extensive oxygen depletion in the bottom waters. The main objectives were to characterize habitat availability and predict the implications of a change in phosphorus loading from the Saluda and Reedy rivers. The baseline scenario of the model showed that habitat was most critical during July and August, when as little of 5% of the reservoir contained tolerable habitat (temperature <28°C and dissolved oxygen >2 mg/L). Favorable habitat (temperature <25°C and dissolved oxygen >2 mg/L) was usually absent for most of July and August. Pulses of higher inflow or freshets produced short-term increases in tolerable habitat, especially in the upper end of the reservoir. Phosphorus-loading scenarios predicted that large reductions (50% or more) would be required to improve habitat substantially during midsummer. For the manager of a striped bass fishery, water quality models can be useful tools for evaluating habitat, especially under marginal conditions, and for predicting the impact of altered water management practices.


2009 ◽  
Vol 8 (1) ◽  
pp. 44-59 ◽  
Author(s):  
Leigh-Anne H. Krometis ◽  
Gregory W. Characklis ◽  
Patricia N. Drummey ◽  
Mark D. Sobsey

The appropriateness of indicator organisms as surrogates for human pathogens in water quality modeling is dependent on similarities in both presence and transport behavior; however, very little data relating indicator and bacterial pathogen transport behavior in receiving waters is available. In this study observations of presence, partitioning behavior (i.e. association with settleable particles) and removal by upland detention basins were used to assess the suitability of six indicator organisms as surrogates for Salmonella spp. bacteria in an urban watershed. The fecal indicator bacteria (fecal coliforms, E. coli and enterococci) were most closely correlated with Salmonella in terms of presence and partitioning behavior (25–35% associated with settleable particles on average); however, further resolution of the variability associated with Salmonella partitioning is required. Higher removal of particle-associated microbes relative to the total microbial concentration by the detention ponds suggests that sedimentation may be an important removal mechanism. However, large fluctuations in pond performance between storm events and occasional net microbial exports in effluents indicate that these best management practices (BMPs), as currently implemented, will be unlikely to achieve water quality objectives.


1985 ◽  
Vol 17 (6-7) ◽  
pp. 1141-1153 ◽  
Author(s):  
B. R. Bicknell ◽  
Anthony S. Donigian ◽  
T. A. Barnwell

This paper describes a demonstration application of comprehensive hydrology and water quality modeling on a large river basin to evaluate the effects of agricultural nonpoint pollution and proposed best management practices (BMP). The model application combines detailed simulation of agricultural runoff and soil processes, including calculation of surface and subsurface pollutant transport to receiving water, with subsequent simulation of instream transport and transformation. The result is a comprehensive simulation of river basin water quality. The investigation of the Iowa River Basin described in this paper was part of a large study which included application and evaluation of the Hydrological Simulation Program - FORTRAN (HSPF) to both the data-intensive Four Mile Creek watershed and the Iowa River above Coralville Reservoir. In this study, the methodology developed on Four Mile Creek was extrapolated to the Iowa River Basin to demonstrate its applicability and functionality on a large river basin. Many model parameter values from Four Mile Creek were applied directly to the study area without adjustment while other parameters were modified based on available information and calibration. This study allowed the exploration of problems associated with modeling hydrology, sediment, and chemical fate and transport in a large river basin with varying meteorologic conditions, soils, and agricultural practices.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 99-105 ◽  
Author(s):  
J.-H. Jeon ◽  
C.G. Yoon ◽  
J.-H. Ham ◽  
H.-S. Hwang

Mass balance analysis and water quality model development for paddy field were performed using field experimental data during 2001–2002. About half (47∼62%) of the total outflow was lost by surface drainage, with the remainder (490∼530 mm) occurring by evapotranspiration. Most of nutrient inflow and outflow were mediated by fertilization and plant uptake, respectively. Nutrient outflow by surface drainage runoff was substantial about 15%∼29% for T-N and 6%∼13% for T-P. However, the responses of yield and drainage outflow to fertilization were not significant in this study. A water quality model applicable to paddy fields was developed and it demonstrates good agreement with observed data. The nutrient concentration of ponded water was high by fertilization at early culture periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501e-502
Author(s):  
Cody J. White ◽  
Michael A. Schnelle ◽  
Gerrit W. Cuperus

A survey was designed to assess high-risk areas with respect to environmental contamination, specifically how it relates to water quality. Oklahoma growers of all economic levels, retail and/or wholesale, were queried at their place of business for their current state of implementing best management practices (BMPs) and other strategic actions that could potentially affect current and future water quality standards. Specific areas such as the physical environment of the nursery, primary pesticides and fertilizers used, Integrated Pest Management (IPM) practices, and employee safety training were covered as well as other aspects germane to preserving and protecting current water quality and related environmental issues. More than 75 nurseries were surveyed and given the opportunity to participate in future training at Oklahoma State Univ. Results indicated that nurseries have not fully implemented many BMPs, but have adopted fundamental IPM approaches. The stage is set for the implementation of the next phase of expansion and refinement into ecologically based programs such as propagation and sale of low pesticide input plant materials, improved cultural practices, and the integration of environmentally sound management approaches. As an example, many growers are in the process of phasing out calendar-based pesticide application programs in favor of aesthetic and/or economic threshold-driven pesticide spray programs.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1045-1056 ◽  
Author(s):  
Thomas O. Barnwell ◽  
Linfield C. Brown ◽  
Wiktor Marek

Computerized modeling is becoming an integral part of decision making in water pollution control. Expert systems is an innovative methodology that can assist in building, using, and interpreting the output of these models. This paper reviews the use and evaluates the potential of expert systems technology in environmental modeling and describes elements of an expert advisor for the stream water quality model QUAL2E. Some general conclusions are presented about the tools available to develop this system, the level of available technology in knowledge-based engineering, and the value of approaching problems from a knowledge engineering perspective.


Sign in / Sign up

Export Citation Format

Share Document