Comparative study of MBR and activated sludge in the treatment of paper mill wastewater

2007 ◽  
Vol 55 (6) ◽  
pp. 23-29 ◽  
Author(s):  
M. Lerner ◽  
N. Stahl ◽  
N.I. Galil

The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost.

2018 ◽  
Vol 78 (5) ◽  
pp. 1129-1136 ◽  
Author(s):  
S. Kitanou ◽  
M. Tahri ◽  
B. Bachiri ◽  
M. Mahi ◽  
M. Hafsi ◽  
...  

Abstract The study was based on an external pilot-scale membrane bioreactor (MBR) with a ceramic membrane compared to a conventional activated sludge process (ASP) plant. Both systems received their influent from domestic wastewater. The MBR produced an effluent of much better quality than the ASP in terms of total suspended solids (TSS), 5-day biological oxygen demand (BOD5) and chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). Other effluent quality parameters also indicated substantial differences between the ASP and the MBR. This study leads to the conclusion that in the case of domestic wastewater, MBR treatment leads to excellent effluent quality. Hence, the replacement of ASP by MBR may be justified on the basis of the improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the high quality of the treated water allows it to be reused for irrigation.


2006 ◽  
Vol 52 (5) ◽  
pp. 494-500 ◽  
Author(s):  
Tim J Dumonceaux ◽  
Janet E Hill ◽  
Carl P Pelletier ◽  
Michael G Paice ◽  
Andrew G Van Kessel ◽  
...  

We examined the microbial community structure and quantified the levels of the filamentous bulking organism Thiothrix eikelboomii in samples of activated sludge mixed liquor suspended solids (MLSS) from Canadian pulp and paper mills. Libraries of chaperonin 60 (cpn60) gene sequences were prepared from MLSS total microbial community DNA and each was compared with cpnDB, a reference database of cpn60 sequences (http://cpndb.cbr.nrc.ca) for assignment of taxonomic identities. Sequences similar to but distinct from the type strain of T. eikelboomii AP3 (ATCC 49788T) (~89% identity over 555 bp) were recovered at high frequency from a mill sample that was experiencing bulking problems at the time of sample collection, which corresponded to microscopic observations using fluorescent in situ hybridization with commercially available 16S rDNA-based probes. We enumerated this strain in five mill-derived MLSS samples using real-time quantitative PCR (qPCR) and found that two samples had high levels of the bulking strain (>1012genomes/g MLSS) and two contained lower but detectable levels of this organism. None of the mill samples contained cpn60 sequences that were identical to the type strain of T. eikelboomii. This technique shows promise for monitoring pulp and paper mill wastewater treatment systems by detecting and enumerating this strain of T. eikelboomii, which may be specific to pulp and paper mill wastewater treatment systems.Key words: activated sludge, biological treatment, bulking; chaperonin 60, cpn60, filamentous bacteria, mixed liquor suspended solids, microbial communities, 021N, qPCR, settling, Thiothrix.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 129-136 ◽  
Author(s):  
Fan Xiao-Jun ◽  
Vincent Urbain ◽  
Yi Qian ◽  
Jacques Manem

The overall performance of the Membrane Bioreactor (MBR) process for municipal wastewater treatment was studied to determine the characteristics of activated sludge under different Sludge Retention Times (SRT) and Hydraulic Retention Times (HRT). The experiment lasted over a period of 300 days, which included 4 runs. The effluent quality of the MBR process in terms of COD and suspended solids, was excellent under all conditions tested. Specific nitrification rates of the activated sludge were measured at steady state in each run. Similar maximum nitrification rate values were obtained through batch experiments with either only NH4Cl or raw wastewater as substrate. Mass balances of the process in terms of COD, nitrogen and inorganic suspended solids were made, and it was found that 28%, 42%, and 48% of influent COD were converted into activated sludge at SRTs of 20, 10, and 5 days, respectively. The COD/VSS ratio of the activated sludge seems to be dependent on mass loading rate. The estimated true yield and decay rate coefficients of the activated sludge were 0.61 kgCOD/kgCOD and 0.050 d−1, respectively. In the completely aerobic system, nitrogen balances were always close to 100%.


2004 ◽  
Vol 50 (3) ◽  
pp. 245-252 ◽  
Author(s):  
N. Stahl ◽  
A. Tenenbaum ◽  
N.I. Galil

The operation of an activated sludge process at a paper mill (AIPM) in Hedera, Israel, was often characterized by disturbances. As part of a research and development project, a study on new biological treatment was initiated. The study included the operation of three pilot units: a. anaerobic treatment by upflow anaerobic sludge blanket (UASB); b. aerobic treatment by two pilot units including activated sludge and membrane bioreactor (MBR), which have been operated in parallel for comparison reasons. The pilot plant working on anaerobic treatment performed COD reduction from 2,365 to 755 mg/L, expressed as average values. Based on the pilot study, a full scale anaerobic treatment system has been erected. During a period of 100 days, after achieving steady state, the MBR system provided steady operation performance, while the activated sludge produced effluent characterized by oscillatory qualities. The following results, based on average values, indicate much lower suspended solids concentrations in the MBR effluent, 2.5 mg/L, as compared to 25 mg/L in the activated sludge. The ability to develop and maintain a concentration of over 11,000 mg/L of mixed liquor volatile suspended solids in the MBR enabled an intensive bioprocess at relatively high cell residence time. This study demonstrates that the anaerobic process, followed by aerobic MBR can provide effluent of high quality which can be considered for economic reuse in the paper mill industry.


2015 ◽  
Vol 752-753 ◽  
pp. 232-237
Author(s):  
Rafidah binti Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Ain Nabila Abdul Talib

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, the optimization study under warm climate has not yet been developed. Hence, the present study was carried out to investigate the removal of ammonia nitrogen (AN) from domestic wastewater through nitrification process using a lab-scale vertical aerated limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The experiment has been carried out for 10 weeks. The influent and effluent of the vertical aerated limestone filter system have been sampled and analyzed on biweekly basis for selected parameters including AN, Total Kjedhal Nitrogen (TKN), pH, alkalinity, temperature and dissolved oxygen to monitor the effectiveness of the filter. Results from this study show that nitrification process has took place within the aerated limestone filter as the results from laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of AN was ranged from 85 % to 92 % and the removal percentage of TKN was ranged from 83.52 % - 91.67 %. The temperature was in the average of 26.3oC±0.75, pH value average of , DO was from 6.64 mg/L to 7.75 mg/L , and the alkalinity was from 15 to 110 mg / l as CaCO3 . Therefore, from this study it can be concluded that aerated rock filter system has high potential in removing AN and TKN. It is also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2006 ◽  
Vol 0 (0) ◽  
pp. 060606025927021-??? ◽  
Author(s):  
V. Agridiotis ◽  
C. F. Forster ◽  
C. Balavoine ◽  
C. Wolter ◽  
C. Carliell-Marquet

Sign in / Sign up

Export Citation Format

Share Document