Removal of Ammonia Nitrogen from Domestic Wastewater Using Vertical Aerated Limestone Filter

2015 ◽  
Vol 752-753 ◽  
pp. 232-237
Author(s):  
Rafidah binti Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Ain Nabila Abdul Talib

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, the optimization study under warm climate has not yet been developed. Hence, the present study was carried out to investigate the removal of ammonia nitrogen (AN) from domestic wastewater through nitrification process using a lab-scale vertical aerated limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The experiment has been carried out for 10 weeks. The influent and effluent of the vertical aerated limestone filter system have been sampled and analyzed on biweekly basis for selected parameters including AN, Total Kjedhal Nitrogen (TKN), pH, alkalinity, temperature and dissolved oxygen to monitor the effectiveness of the filter. Results from this study show that nitrification process has took place within the aerated limestone filter as the results from laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of AN was ranged from 85 % to 92 % and the removal percentage of TKN was ranged from 83.52 % - 91.67 %. The temperature was in the average of 26.3oC±0.75, pH value average of , DO was from 6.64 mg/L to 7.75 mg/L , and the alkalinity was from 15 to 110 mg / l as CaCO3 . Therefore, from this study it can be concluded that aerated rock filter system has high potential in removing AN and TKN. It is also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.

2015 ◽  
Vol 773-774 ◽  
pp. 1350-1354
Author(s):  
Rafidah Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Siti Zahirah Haron

Excessive nitrogen in domestic wastewater discharge accelerates eutrophication in an aquatic ecosystem. To treat wastewater high in nitrogen conventionally are more expensive, complex and generate high amount of sludge. In line with this situation, rock filters (RF) emerged as one of attractive natural wastewater treatment method to treat wastewater high in nutrient because this filter system is easier to maintain, using low-cost filter media, and environmentally-friendly technology. However, studies on the removal of nitrogen in the system are still limited due to nitrification study under warm climate. Thus, an aerated rock filter system has been designed in this study to remove ammonia nitrogen from domestic wastewater using the recommended hydraulic loading rate in warm climate condition. The laboratory aerated rock filter system has been in operated for 2 months with 5 weeks of sampling. The filter influent and effluent samples have been collected and analyzed twice a week for Total Kjeldhal Nitrogen (TKN), ammonia nitrogen (AN), nitrates ,pH, temperature, DO and alkalinity to monitor the filter performance in removing nitrogen. Results from the laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of ammonia nitrogen was ranged from 66.05 % to 91.30 % and the removal percentage of TKN was ranged from 63.23 % to 87.68 %. The temperature was in the range of 25°C to 27.5°C, pH value was in the range of 6.34 to 8.04, DO was from 6.64 mg/L to 7.75 mg/L, and the alkalinity was from 15 to 110 as mg /L CaCO3. Therefore, from this laboratory experiment it can be concluded that aerated rock filter system has high potential in removing AN and TKN. The system also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2014 ◽  
Vol 1051 ◽  
pp. 578-582
Author(s):  
Rafidah binti Hamdan ◽  
Tengku Nur Zulaikha ◽  
Izzati Izwani Ibrahim

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, in the previous works in the UK the system was outperformed in removing ammonia nitrogen with limited nitrate removal. Hence, the present study was carried out to investigate the removal of nitrate from domestic wastewater through denitrification process using a lab-scale limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The treatments were run in lab-scale limestone denitrification filter for 10 weeks. Effluent from nitrification filter was passing through the limestone denitrification filter as influent for further treatment. The in fluent and effluent of the filter system have been sampled and analyzed on biweekly basis for selected parameters including pH, alkalinity, temperature, dissolved oxygen, nitrate and ammonia nitrogen to monitor the effectiveness of the filter. Results from this study show that denitrification process has took place even the percentages of nitrate removal were considerably low but it seems promising with some modification of designing the the limestone filter to enhance denitrification process. The highest removal rate was 17.66%. Low removal of nitrate was inhibited within the filter system might be due to the high DO concentration as it was found that the range of DO was 4.75-7.78 mg/L. To permit the denitrification process to take place within the filter system, it is required an anoxic condition in the presence of nitrate with minimum DO concentration. Consequently, some modifications to the filter design will be considered in the future research in order to enhance the removal of nitrate through denitrification process.


2005 ◽  
Vol 51 (12) ◽  
pp. 69-74 ◽  
Author(s):  
H.W. Pearson ◽  
S.T. Silva Athayde ◽  
G.B. Athayde ◽  
S.A. Silva

Studies on experimental primary facultative ponds showed that varying the depth from 1.25 m to 2.3 m had no effect on the rates of BOD removal. In contrast k values for FC removal rates were higher in the shallower (1.25 m) facultative ponds. The risk of odour release via H2S production was higher in the 2.2 m ponds than the 1.25 m ponds and NH3 removal was much better in the 1.25 m facultative ponds. A comparison of the efficiency of shallow 5-pond series (1.0 m and 0.61 m deep) with a 2.2 m deep series showed that the shallow systems were more efficient at FC removal, but the deeper series actually saved land area for the same FC final effluent quality under tropical conditions. However, efficient nutrient removal (N and P) only occurred in the shallow series and effluent standards for nutrient concentrations are unlikely to be met by 2.2 m deep 5-pond series in contrast to the norms for pathogen removal.


2011 ◽  
Vol 63 (8) ◽  
pp. 1547-1556 ◽  
Author(s):  
J. S. Ventura ◽  
S. Seo ◽  
I. Chung ◽  
I. Yeom ◽  
H. Kim ◽  
...  

In this study, a pilot scale anaerobic-anoxic-oxic (A2O) process with submerged membrane (MBR) in the oxic tank was coupled with thermophilic aerobic digestion (TAD) reactor and was operated for longer than 600 days to treat real domestic wastewater. Regardless of the varying conditions of the system, the A2O-MBR-TAD process removed MLSS, TCOD, BOD, TN, TP, and E. coli about 99%, 96%, 96%, 70%, 83%, and 99%, respectively. The additional TP removal of the system was due to the precipitating agent directly added in the oxic reactor, without which TP removal was about 56%. In the TAD reactor, receiving MLSS from the oxic tank (MBR), about 25% of TSS and VSS were solubilized during 2 days of retention. The effluent of the TAD reactor was recycled into the anoxic tank of A2O-MBR to provide organic carbon for denitrification and cryptic growth. By controlling the flowrate of wasting stream from the MBR, sludge production decreased to almost zero. From these results, it was concluded that the A2O-MBR-TAD process could be a reliable option for excellent effluent quality and near zero-sludge production.


2011 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
ElShafie Ahmed

An upflow, partially packed biological aerated filter (BAF) reactor was used to remove nitrogen in the form of ammonia ions by a nitrification process that involves physical, chemical and biological phenomena governed by a variety of parameters such as dissolved oxygen concentration, pH and alkalinity. Dissolved oxygen (DO) and pH were shown to have effects on the nitrification process in this study. Three C:N ratios i.e., 10, 4 and 1 were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 0.405 ± 0.015 kg chemical oxygen demand m−3 d−1. The removal efficiencies of ammonia linearly increase with a rise of the initial concentration of ammonia-nitrogen. The results of the 115 days' operation of the BAF system showed that its overall NH3-N performance was good, where a removal efficiency of 87.0 ± 2.9%, 89.2 ± 1.38% and 91.1 ± 0.7% and COD removal of 87.6 ± 2.9%, 86.4 ± 2.1% and 89.5 ± 2.6% were achieved for the C:N ratios of 10, 4 and 1, respectively on average, over 6 h hydraulic retention time (HRT). No clogging occurred throughout the period although backwashing was eliminated. It was concluded that the BAF system proposed in this study removed nitrogen by the nitrification process extremely well.


2015 ◽  
Vol 19 (2) ◽  
pp. 7
Author(s):  
Andrés Felipe Torres Franco ◽  
Nancy Vásquez Sarria ◽  
Jenny Rodriguez Victoria

A pilot-scale study was conducted to evaluate a traditional contact stabilization activated sludge system (CSASC) and a modified CSAS (CSASM) treating domestic wastewater. The CSASC system was comprised of a contact reactor (CR), a stabilization reactor (SR) and a secondary settler (SS); the CSASM included a second CR, a second SS (CR2 and SS2), and a modified SR (SRM) divided into four zones: an attached-suspended growth zone which allowed the system to reach an average sludge retention time close to 36 d and favored the occurrence of nitrification; an anoxic zone for denitrification occurrence; an aerated suspended growth zone with a high presence of organic carbon; and an additional aerated suspended growth zone with a high ammonia concentrations environment. The CSASC’s removal efficiencies of chemical oxygen demand (COD) and total ammonia nitrogen (TAN) were respectively 94±4 % and 53±12%; whereas CSASM’s efficiencies were 88±7% for COD and 92±7% for TAN. Concentrations of TAN and NO3 --N in the CSASC’s final effluent were 14.3±5.2 and 5.0±2.9 mg×L-1; and 4.8±4.4 and 9.1±5.8 mg×L-1 in the CSASM’s final effluent. Results demonstrated that the proposed configuration obtained higher nitrogen removal efficiencies than traditional CSAS.</p>


2007 ◽  
Vol 55 (6) ◽  
pp. 23-29 ◽  
Author(s):  
M. Lerner ◽  
N. Stahl ◽  
N.I. Galil

The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost.


2012 ◽  
Vol 209-211 ◽  
pp. 2049-2052
Author(s):  
Chang Hang Wu ◽  
Wei Jun Zhang

A lab-scale sequencing batch biofilm reactor (SBBR) was developed to treat domestic wastewater. After one year’s operation, the results were obtained as follows: when the reaction carried out in 3 h, COD removal efficiency approached or reached the maximal value, up to 90%. The nitrification process of NH3-N needed 4 h, and NH3-N removal efficiency reached the maximal value. Moreover, according to the variation of TN , NO3--N and NO2--N concentration in the nitrification and denitrification process, when NH3-N degraded to zero or the minimal value, just two cycles ending, it means that the SBBR system completed the nitrification and denitrification process.


2019 ◽  
Author(s):  
Amallia Ashuri ◽  
Ida Medawaty

Access to public sanitation in the tidal area in Indonesia is limited. The people in the tidal area tend to dispose of their domestic wastewater to the water body directly without treating it first. The lack of wastewater infrastructure provision in the tidal area could cause water body pollution that degrades its carrying capacity and destructs aquatic ecosystems. Eco-friendly technology could be used to treat the wastewater in the tidal area as the solution to improve water quality. In this research, the eco-friendly wastewater treatment technology was chosen to observe the effluent quality of individual scale biofilter-phytoremediation. Performance test of wastewater treatment technology was done by measuring the effluent quality. The effluent quality of the biofilter-phytoremediation system was compared to the effluent quality standard that stated in Ministry Regulation of Environment and Forestry No. P.68/Menlhk/Setjen/Kum.1/8/2016. The study showed the following results such as the average concentration of TSS was 7,63 mg/L, pH 6,70, ammonia was 1,78 mg/L, COD was 18,16 mg/L, and BOD was 9,38 mg/L. These results indicated that in general, the effluent quality of biofilter-phytoremediation system had met the above standard.


2012 ◽  
Vol 518-523 ◽  
pp. 2406-2409 ◽  
Author(s):  
Yun Xiao Jin ◽  
Jun Yao

A lab-scale sequencing batch biofilm reactor (SBBR) was developed to treat domestic wastewater. After one year’s operation, the results were obtained as follows: when the reaction carried out in 3 h, COD removal efficiency approached or reached the maximal value, up to 90%. The nitrification process of NH3-N needed 4 h, and NH3-N removal efficiency reached the maximal value. Moreover, according to the variation of TN , NO3--N and NO2--N concentration in the nitrification and denitrification process, when NH3-N degraded to zero or the minimal value, just two cycles ending, it means that the SBBR system completed the nitrification and denitrification process.


Sign in / Sign up

Export Citation Format

Share Document