Application of biochemical products as a bioremediation technique for domestic sewage treatment plants

2007 ◽  
Vol 56 (7) ◽  
pp. 33-40 ◽  
Author(s):  
Salmiati ◽  
M.R. Salim ◽  
R.Md. Hassan ◽  
K.Y. Tan

Biochemical products have been widely used for treatment of various types of wastewater. The treatment processes with the addition of biochemical products are quite attractive because of their simplicity, minimal use of equipment, they are environmentally friendly and are suitable for the removal of organic pollutants. The purpose of these products is to enhance the activities of beneficial microbes in order to improve treatment performance. This study was carried out to determine the potential of applying biochemical products in assisting and improving the performance of sewage treatment plants. In this study, four biochemical products, namely: Zeolite, Bio-C, Eco-B and Was-D, were applied to the sewage treatment plant. Analyses were carried out on several water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), oil & grease (O&G), phosphorus (P), ammoniacal nitrogen (AN) and sludge thickness (ST). From the results obtained, it can be seen that the overall performance of the treatment plant improved with most of the parameters studied were found to fulfill the DOE Standard B requirements. The performance of Bio-C was found to give better results than other products.

1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


2021 ◽  
Author(s):  
Lars Haubye Holbech ◽  
Cara Caroline Cobbinah

Abstract Heavy urbanisation increasingly isolates and exerts pressure on natural wetlands, particularly in rapidly growing tropical developing countries, including West Africa. Constructed wetlands such as sewage treatment plants, may unintendedly offer wildlife protection due to prohibitive access control and limited use, thereby attracting wary and specialised waterbirds, otherwise heavily disturbed in formally protected wetlands with less polluted waterbodies. We present data from a rapid survey on 1-year post-opening colonisation and use of waterbirds in a recently constructed 11 ha restricted-access sewage treatment plant situated in Ghana’s capital, Accra. During November-December 2013 and January 2014, nine daily counts in each month produced an accumulated count of >4200 observations belonging to 26 species of waterbirds, including several important Afro-Palaearctic and intra-African migrants, hereunder ardeids, piscivorous divers, waterfowl and waders. The distributional patterns of waterbirds clearly reflected local foraging opportunities and water quality parameters in the system of 12 inter-connected waste stabilisation ponds. A nearby semi-natural wetland with cleaner waterbodies, but higher levels of human interference, supported half as many waterbirds, predominantly commensal gregarious species. Our data suggests that strict protection from disturbances outweighs possible negative implications attributed to mere pollution of waterbodies supporting various waterbird guilds, thus highlighting the potential importance of non-formally protected sewage treatment plants distributed in functional networks, as a complement to designated wetlands. We contemplate that establishing similar or larger plants jointly will improve sewage treatment and waterbird conservation in urban Ghana, and West Africa in general.


2019 ◽  
Vol 35 (4) ◽  
pp. 1352-1359
Author(s):  
Nimeshchandra Vasanji Vashi ◽  
Navinchandra Champaklal Shah ◽  
Kishor Ratilal Desai

Upflow Anaerobic Sludge Blanket (UASB) process is a popular process for treatment of sewage in India due to its low power requirement. However, UASB system has many limitations in terms of removal of carbon, nutrients and pathogens. This requires post treatment after UASB to meet the treated water quality standards. Current treatment processes adopted for the post-treatment of anaerobically treated sewage, especially the full-scale UASB reactors in Surat, India are presented. Two full scale treatment plants with different UASB post treatment processes viz., Extended Aeration and Moving Bed Biological Reactor (MBBR) are selected for studies. A pilot study was carried out in a full scale Sewage Treatment Plant (STP) to study the performance of Sequential Batch Reactor (SBR) for treatment of UASB treated sewage and the results are reported for period of Three months. Inlet and outlet parameters such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), etc. for post UASB biological process are presented. The performance of the SBR process was observed to be better among all the processes studied.


Author(s):  
Dhanraj M R ◽  
◽  
Ganesha A ◽  

The aim of this study is to evaluate the quality of sewage generated from 7000 KLD Sewage Treatment Plant (STP) located at Manipal Institute of Technology, Manipal Karnataka which is based on the Activated Sludge Technology. The study of sewage quality of this plant is essential as most of the treated effluent discharged into a stream during monsoon and remaining season used for a Gardening purpose. Water samples were collected from the outlet and analyzed for the major waste-water quality parameters, such as pH, Biochemical Oxygen Demand (BOD) and residual chlorine. The overall quality of sewage of 7000 KLD Sewage treatment plants will be evaluated by collecting samples. The results of these evaluations also determine whether the effluent discharged into the water body is under limits given by Karnataka state pollution control board (KSPCB) & BIS standards.


2021 ◽  
Vol 11 (2) ◽  
pp. 15-24
Author(s):  
Nur Diana Wakimin ◽  
Juferi Idris ◽  
Lydia Dundun Francis ◽  
Maureen Neging ◽  
Siti Rafiqah Muskil ◽  
...  

Pollutants from sewage wastewater are major concerns due to their environmental effects. Thus, an effective sewage wastewater treatment plant is important to ensure discharged effluent is well treated before it can be released to rivers or water streams. This study aims to evaluate the performance of the Activated Sludge Hi-Kleen Treatment Plant (ASHTP) located at H Block (ASHTP at H Block) and L Block (ASHTP at L Block) in UiTM Sarawak Branch, Samarahan Campus, Sarawak, Malaysia. The evaluation was based on physicochemical and removal efficiency namely pH, temperature, turbidity, chemical oxygen demand (COD), and total suspended solids (TSS) from raw influent and treated effluent. The findings indicated that the overall performance of both ASHTP at H Block and L Block were satisfactory where treated effluent meets the standard discharge limits of Environmental Quality (Sewage) Regulations 2009 (Standard B). For ASHTP at H Block, the removal efficiencies of turbidity, COD, and TSS were found to be 86.00, 13.76, and 88.02% respectively, in which the pH, temperature, turbidity, COD, and TSS of the treated effluent were 7.30, 28.10°C, 10.40 NTU, 14.10 mg/L and 8.90 mg/L respectively. Meanwhile, for ASHTP at L Block, the removal efficiencies of turbidity, COD, and TSS were found to be 43.20, 41.90, and 51.61% respectively, in which the pH, temperature, turbidity, COD, and TSS in the treated effluent were 7.30, 27.90°C, 21.10 NTU, 58.10 mg/L and 18.00 mg/L respectively. Proper maintenance of sewage treatment plant is important to ensure its effectiveness as well as to prolong its lifespan.


2018 ◽  
Vol 8 (1) ◽  
pp. 124-131
Author(s):  
Paulo Sergio Scalize ◽  
Juliana Moraes Frazão

Abstract The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2902
Author(s):  
Nan Ma ◽  
Nannan Zhang ◽  
Ling Gao ◽  
Rongfang Yuan ◽  
Huilun Chen ◽  
...  

Diclofenac (DCF) has been widely found in sewage treatment plants and environmental water bodies, and has attracted worldwide attention. In this paper, the photocatalytic degradation of DCF was investigated using a laboratory-scale simulated solar experimental device. This study focused on exploring the effects of the actual secondary effluent from sewage treatment plants (SE-A and SE-B) on the photocatalytic degradation of DCF and the changes of dissolved organic matter (DOM) during the photocatalytic degradation process. The results showed when SE-A and SE-B were used as the background water of the DCF solution, they displayed a significant inhibitory effect on the degradation of DCF, and the values of k were 0.039 and 0.0113 min−1, respectively. Among them, DOM played a major inhibitory role in photocatalytic degradation of DCF in sewage. In the photocatalytic process, the biological toxicity of the DCF solution was the least after 30 min of reaction, and then gradually increased. Furthermore, the organic matters in the sewage were greatly degraded after the photocatalytic reaction, including 254 and 365 nm ultraviolet (UV254, UV365) and chemical oxygen demand (COD). Moreover, titanium dioxide (TiO2) first catalyzed the degradation of macromolecular organic matters, and then degraded the small molecular organic matters.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


Sign in / Sign up

Export Citation Format

Share Document