Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion

2008 ◽  
Vol 57 (7) ◽  
pp. 965-971 ◽  
Author(s):  
C. Picioreanu ◽  
K. P. Katuri ◽  
I. M. Head ◽  
M. C. M. van Loosdrecht ◽  
K. Scott

This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power–current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


ACS Nano ◽  
2012 ◽  
Vol 6 (3) ◽  
pp. 2394-2400 ◽  
Author(s):  
Yang-Chun Yong ◽  
Xiao-Chen Dong ◽  
Mary B. Chan-Park ◽  
Hao Song ◽  
Peng Chen

2019 ◽  
Vol 412 ◽  
pp. 86-92 ◽  
Author(s):  
Luye Chen ◽  
Youzhi Li ◽  
Jiani Yao ◽  
Gaoming Wu ◽  
Bin Yang ◽  
...  

2015 ◽  
Vol 298 ◽  
pp. 177-183 ◽  
Author(s):  
Celal Erbay ◽  
Gang Yang ◽  
Paul de Figueiredo ◽  
Reza Sadr ◽  
Choongho Yu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 574
Author(s):  
Emilius Sudirjo ◽  
Paola Y. Constantino Diaz ◽  
Matteo Cociancich ◽  
Rens Lisman ◽  
Christian Snik ◽  
...  

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.


Author(s):  
Zhou Ye ◽  
Junbo Hou ◽  
Michael W. Ellis ◽  
Bahareh Behkam

A three-electrode system was used to study the effect of anode surface roughness on the performance of microbial fuel cells (MFCs). Two glassy carbon plates were polished to uniform roughness of the orders of magnitude of 10s of nm and 100s of nm. Atomic force microscopy (AFM) was used to quantify the roughness as well as the 3D topography of the surfaces. Multiple electrochemical methods including potentiostatic tests, potentiodynamic tests, and electrochemical impedance spectroscopy (EIS) were utilized to monitor the performance of the glassy carbon electrodes. After 275 hours of experimentation, the current density generated by the rough electrode was much higher than that generated by the smooth one. Furthermore, the charge-transfer resistance of the rough electrode was lower than that of the smooth one. The better electrochemical performance of the rough surface may be due to denser biofilm grown on the surface, which was observed by scanning electron microscopy (SEM).


2006 ◽  
Vol 6 (3) ◽  
pp. 285-292 ◽  
Author(s):  
T. H. Pham ◽  
K. Rabaey ◽  
P. Aelterman ◽  
P. Clauwaert ◽  
L. De Schamphelaire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document