Nutrient removal process selection for planning and design of large wastewater treatment plant upgrade needs

2008 ◽  
Vol 57 (9) ◽  
pp. 1345-1348 ◽  
Author(s):  
M. Urgun-Demirtas ◽  
K. R. Pagilla ◽  
T. E. Kunetz ◽  
J. P. Sobanski ◽  
K. P. Law

A protocol to select nutrient removal technologies that can achieve low nutrient effluents (total nitrogen (TN) < 5 mg/L and total phosphorus (TP) < 0.5 mg/L) was developed for different wastewater treatment plant (WWTP) sizes based on the research conducted during a Water Environment Research Foundation funded project. The adaptable protocol includes technology and cost assessment of feasible (pre-screened) nutrient removal technologies that are being successfully implemented at full scale. The information collected from the full scale nutrient removal plants to develop this protocol includes design, operational, performance, and cost data through a direct survey of plants, and published data. The protocol includes a “technology threshold” approach consisting of Tier I (TN < 5.0 mg/L; TP < 0.5 mg/L) and Tier II (TN < 3.0 mg/L; TP < 0.1 mg/L) effluent nutrient levels for different plant sizes. A very large WWTP (1,250,000 m3/day flow) in Chicago, Illinois, USA adapted this protocol for master planning and design of future nutrient removal facilities based on plant and site specific criteria.

2015 ◽  
Vol 72 (3) ◽  
pp. 391-405 ◽  
Author(s):  
Nashia Deepnarain ◽  
Sheena Kumari ◽  
Jordache Ramjith ◽  
Feroz Mahomed Swalaha ◽  
Valter Tandoi ◽  
...  

Biological nutrient removal (BNR) systems across the globe frequently experience bulking and foaming episodes, which present operational challenges such as poor sludge settling due to excessive filamentous bacteria. A full-scale BNR plant treating primarily domestic wastewater was monitored over a period of 1 year to investigate filamentous bacterial growth response under various plant operating parameters. Identification of filamentous bacteria by conventional microscopy and fluorescent in situ hybridisation indicated the dominance of Eikelboom Type021N, Thiothrix spp., Eikelboom Type 1851 and Eikelboom Type 0092. A cumulative logit model (CLM) was applied to elucidate significant relationships between the filamentous bacteria and plant operational parameters. The model could predict the potential abundance of dominant filamentous bacteria in relation to wastewater treatment plant operational parameters. Data obtained from the model corroborated with previous findings on the dominance of most filaments identified, except for Type 0092, which exhibited some unique traits. With further validation, the model could be successfully applied for identifying specific parameters which could contribute towards filamentous bulking, thus, providing a useful tool for regulating specific filamentous growth in full-scale wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document