Quali-quantitative characterization and wastewater treatment of a winery located in the mid-west of Santa Catarina state, South of Brazil

2009 ◽  
Vol 60 (4) ◽  
pp. 1025-1031 ◽  
Author(s):  
A. R. C. Ortigara ◽  
P. H. Sezerino ◽  
A. P. Bento ◽  
D. Scaratti

This paper analyses variations in the quali-quantitative characterization of winery wastewater, and the behavior of the treatment of these effluents. The wastewater produced is sent to two disposition systems: Point A receives the wastewater from the production area whereas Point B receives the wastewater from the area where the washing of bottles takes place. Two Aerated Submerged Biofilter (ASB) reactors (with oyster shells as support material) were built at lab scale to promote the treatment of the winery effluent. Water usage and effluent production values of the 2008 harvest season indicate that grape processing accounted for 30% of the total water usage. The median value found for the effluent at Point A was 8,260 mg COD L−1 and at Point B 358 mg COD L−1. The average C/N/P ratio found at Point A was 100/0.29/0.28 during the harvest and 100/0.27/0.25 during the non harvest. For ASB 1 the COD removal efficiency ranged from 56% to 90%, with the removed organic load ranging from 1.5 kg COD m−3 d−1 to 2.7 kg COD m−3 d−1, respectively. For ASB 2 the COD removal efficiency ranged from 63% to 82%, with the removed organic load ranging from 1.8 kg COD m−3 d−1 to 1.7 kg COD m−3 d−1, respectively.

2005 ◽  
Vol 52 (1-2) ◽  
pp. 391-396 ◽  
Author(s):  
F.J. Almendariz ◽  
M. Meraz ◽  
A.D. Olmos ◽  
O. Monroy

Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SWCO2) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L−1 of phenol, p-cresol and o-cresol, respectively. The mixture was treated anaerobically in an EGSB reactor fed with 1.5 gCOD L−1 d−1, without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L−1 d−1. The mixture SC/SWCO2 added to the phenol load, was step increased from 0.10 to 0.87 gCOD L−1 d−1 maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.


1995 ◽  
Vol 32 (12) ◽  
pp. 121-129 ◽  
Author(s):  
A. Espinosa ◽  
L. Rosas ◽  
K. Ilangovan ◽  
A. Noyola

A laboratory UASB reactor was fed with cane molasses stillage at organic loadings from 5 to 21.5 kg COD/m3 d. With an organic load of 17.4 kg COD/m3 d, an accumulation of VFA, principally propionic acid, was observed due to little bioavailability or lack of trace metals (Fe, Ni, Co and Mo). Associated to this, the performance of the UASB reactor was low (44% COD removal efficiency), with an alkalinity ratio above 0.4. The addition of Fe (100 mg/l), Ni (15 mg/l), Co (10 mg/l) and Mo (0.2 mg/l) to the influent reduced significantly the level of propionic acid (5291mg/l to 251 mg/l) and acetic acid (1100 mg/l to 158 mg/l). The COD removal efficiency increased from 44% to 58%, the biogas production from 10.7 to 14.8 l/d (NTP) and 0.085 to 0.32 g CH4-COD/g SSV d for specific sludge methanogenic activity with propionic acid as substrate. These improved results were obtained with high COD (68.9 g/l) and organic load (21.5 kg COD/m3 d).


2008 ◽  
Vol 57 (5) ◽  
pp. 797-802 ◽  
Author(s):  
L. Borzacconi ◽  
I. López ◽  
M. Passeggi ◽  
C. Etchebehere ◽  
R. Barcia

A full scale UASB reactor treating the effluent of a malting plant was operated during nearly two years. During 37 weeks of operation the reactor worked with a COD removal efficiency of 80% and a biogas production of nearly 300 m3/d with a methane content of 77%. After the start up and during these months of operation the volumetric organic load was 4 kgCOD/m3.d and the specific organic load was between 0.2–0.4 kgCOD/kgVSS.d. The sludge SMA in this period was around 0.25 kgCOD/kg VSS.d. On week 37 as a result of a problem at the industrial process the pH in the reactor dropped to a value of 4.8. After pH recovering, the reactor worked with fluctuating COD values in the exit and showed a downward trend in the COD removal efficiency. On week 81 the presence of filaments in the granules was detected. High proportion of Chloroflexi filaments were detected by FISH in the sludge. Changes in the microbial population caused by the low pH probably destabilize the reactor performance. The presence of filamentous granules in the sludge and its further growing could be encouraged by the pH drop and the low specific organic load applied to the reactor. The low specific organic load was a consequence of the high VSS content in the UASB reactor, due to the lack of purges. The length of the filaments attached to the granules grew throughout time. In order to eliminate the sludge with poor settlement properties a recycle was applied to the reactor. As a consequence, low amount of granular sludge stayed in the reactor. At the end, COD concentration in the influent reached higher values than in normal operation; at the same time a complete sludge wash out occurred. On the other hand, using the same sludge (after the recycle implementation) in a bench scale reactor the good properties of the sludge were completely recovered.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Quang-Minh Nguyen ◽  
Duy-Cam Bui ◽  
Thao Phuong ◽  
Van-Huong Doan ◽  
Thi-Nham Nguyen ◽  
...  

The effect of copper, zinc, chromium, and lead on the anaerobic co-digestion of waste activated sludge and septic tank sludge in Hanoi was studied in the fermentation tests by investigating the substrate degradation, biogas production, and process stability at the mesophilic fermentation. The tested heavy metals were in a range of concentrations between 19 and 80 ppm. After the anaerobic tests, the TS, VS, and COD removal efficiency was 4.12%, 9.01%, and 23.78% for the Cu(II) added sample. Similarly, the efficiencies of the Zn(II) sample were 1.71%, 13.87%, and 16.1% and Cr(VI) efficiencies were 15.28%, 6.6%, and 18.65%, while the TS, VS, and COD removal efficiency of the Pb(II) added sample was recorded at 16.1%, 17.66%, and 16.03% at the concentration of 80 ppm, respectively. Therefore, the biogas yield also decreased by 36.33%, 31.64%, 31.64%, and 30.60% for Cu(II), Zn(II), Cr(VI), and Pb(II) at the concentration of 80 ppm, compared to the raw sample, respectively. These results indicated that Cu(II) had more inhibiting effect on the anaerobic digestion of the sludge mixture than Zn(II), Cr(VI), and Pb(II). The relative toxicity of these heavy metals to the co-digestion process was as follows: Cu (the most toxic) > Zn > Cr > Pb (the least toxic). The anaerobic co-digestion process was inhibited at high heavy metal concentration, which resulted in decreased removal of organic substances and produced biogas.


2017 ◽  
Vol 77 (3) ◽  
pp. 565-575 ◽  
Author(s):  
Zhenchao Zhang

Abstract Hydroxypropyl guar gum is considered to be a main component of oilfield fracturing wastewater (OFW). This work is intended to optimize the experimental conditions for the maximum oxidative degradation of hydroxypropyl guar gum by the coagulation and UV/H2O2/ferrioxalate complexes process. Optimal reaction conditions were proposed based on the chemical oxygen demand (COD) removal efficiency and UV_vis spectra analysis. The overall removal efficiency of COD reached 83.8% for a dilution ratio of raw wastewater of 1:2, pH of 4 and FeCl3 loading of 1,000 mg/L in the coagulation process; the dosage of H2O2 (30%,v/v) was 0.6% (v/v) and added in three steps, the n(H2O2)/n(Fe2+) was 2:1, n(Fe2+)/n(C2O42−) was 3:1 and pH was 4 in the UV/H2O2/ferrioxalate complexes process; pH was adjusted to 8.5–9 by NaOH and then cationic polyacrylamide (CPAM) of 2 mg/L was added in the neutralization and flocculation process. The decrease in COD during the coagulation process reduced the required H2O2 dosage and improved efficiency in the subsequent UV/H2O2/ferrioxalate complexes process. Furthermore, COD removal efficiency significantly increased by more than 13.4% with the introduction of oxalate compared with UV/Fenton. The UV_vis spectra analysis results indicated that the coagulation and UV/H2O2/ferrioxalate complexes process could efficiently remove the hydroxypropyl guar gum dissolved in OFW. An optimal combination of these parameters produced treated wastewater that met the GB8978-1996 Integrated Wastewater Discharge Standard level III emission standard.


2012 ◽  
Vol 441 ◽  
pp. 589-592
Author(s):  
Zhi Min Fu ◽  
Yu Gao Zhang ◽  
Xiao Jun Wang

A combined process of biological wriggle bed and ozone biological aerated filter was utilized to treat textile wastewater. Results showed that COD removal efficiency was almost 90.4%. The average effluent COD was 85.87 mg/L. The effluent colority was 64-32 times. This study indicated that the combined process is potentially useful for treating textile wastewater.


2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Yongli Zhang ◽  
Shujuan Dai ◽  
Yanbo Zhou ◽  
Kai Lin

Fe-Co-Ce composite catalysts were prepared by coprecipitation method using CO(NH2)2, NaOH, NH4HCO3, and NH3·H2O as precipitant agents. The effects of the precipitant agents on the physicochemical properties of the Fe-Co-Ce based catalysts were investigated by SEM, TEM, BET, TG-DTA, and XRD. It was found that the precipitant agents remarkably influenced the morphology and particle size of the catalysts and affected the COD removal efficiency, decolorization rate, and pH of methyl orange for catalytic wet air oxidation (CWAO). The specific surface area of the Fe-Co-Ce composite catalysts successively decreased in the order of NH3·H2O, NH4HCO3, NaOH, and CO(NH2)2, which correlated to an increasing particle size that increased for each catalyst. For the CWAO of a methyl orange aqueous solutions, the effects of precipitant agents NH3·H2O and NaOH were superior to those of CO(NH2)2and NH4HCO3. The catalyst prepared using NH3·H2O as the precipitant agent was mostly composed of Fe2O3, CoO, and CeO2. The COD removal efficiency of methyl orange aqueous solution for NH3·H2O reached 92.9% in the catalytic wet air oxidation. Such a catalytic property was maintained for six runs.


2003 ◽  
Vol 47 (11) ◽  
pp. 189-194 ◽  
Author(s):  
Q.J. Yu ◽  
H. Xu ◽  
D. Yao ◽  
P. Williams

Biofilm (or attached growth) reactors can be effectively used to treat organic wastewater from various industries such as food processing industry. They have a number of advantages including high organic loading rates (OLRs) and improved operational stability. A flexible fibre biofim reactor (FFBR) has been developed for efficient and cost effective treatment of food processing wastewater. In the process, simple flexible fibre packing with a very high specific surface area is used as support for microorganisms. The COD removal efficiencies for a range of OLRs have been studied. The FFBR can support an increasingly high OLR, but with a corresponding decrease in the COD removal efficiency. Therefore, a two-stage FFBR was developed to increase the treatment efficiency for systems with high OLRs. Experimental results indicated that a high overall COD removal efficiency could be achieved. At an influent COD of about 2700 mg/L and an OLR of 7.7 kgCOD/m3d, COD removal efficiencies of 76% and 82% were achieved in the first and the second stage of the reactor, respectively. The overall COD removal efficiency was 96%. Therefore, even for wastewater samples with high organic strength, high quality treated effluents could be readily achieved by the use of multiple stage FFBRs.


2017 ◽  
Vol 76 (12) ◽  
pp. 3278-3288 ◽  
Author(s):  
Zhenchao Zhang

Abstract In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H2O2 dosage of 12 mg/L, with a H2O2/Fe2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).


Sign in / Sign up

Export Citation Format

Share Document