Treating municipal wastewater with the goal of resource recovery

2011 ◽  
Vol 63 (1) ◽  
pp. 25-31 ◽  
Author(s):  
P. M. Sutton ◽  
H. Melcer ◽  
O. J. Schraa ◽  
A. P. Togna

A new municipal wastewater treatment flowsheet was developed with the objectives of energy sustainability, and water and nutrient recovery. Energy is derived by shunting a large fraction of the organic carbon in the wastewater to an anaerobic digestion system. Aerobic and anaerobic membrane bioreactors play a key role in energy recovery. Phosphorus and nitrogen are removed from the wastewater and recovered through physical-chemical processes. Computer modeling and simulation results together with energy balance calculations, imply the new flowsheet will result in a dramatic reduction in energy usage at lower treatment plant capital costs in comparison to conventional methods.

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 231
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Zhenlin Liang ◽  
Xuguang Hou ◽  
Zhipeng Li ◽  
...  

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.


2008 ◽  
Vol 57 (10) ◽  
pp. 1487-1493 ◽  
Author(s):  
S. Lindtner ◽  
H. Schaar ◽  
H. Kroiss

During a six-year period the Austrian Benchmarking System was developed. The main objectives of this benchmarking system are the development of process indicators, identification of best performance and determination of cost reduction potentials. Since 2004 this system is operated via an internet platform and automated to a large extent. Every year twenty to thirty treatment plants use the web-based access to this benchmarking platform. The benchmarking procedure comprises data acquisition, data evaluation including reporting and organised exchange of experience for the treatment plant managers. The process benchmarking method links the real costs with four defined main processes and two support processes. For wastewater treatment plants with a design capacity >100,000 PE these processes are further split up into sub-processes. For each (sub-) process the operating costs are attributed to six cost elements. The specific total yearly costs and the yearly operating costs of all (sub-)processes are related to the measured mean yearly pollution load of the plant expressed in population equivalents (PE110: 110 gCOD/d corresponding to 60 g BOD5/d)). The specific capital costs are related to the design capacity (PE). The paper shows the benchmarking results of 6 Austrian plants with a design capacity >100,000 PE representing approximately 30% of the Austrian municipal wastewater treatment plant capacity.


Sign in / Sign up

Export Citation Format

Share Document