Microbiological risks of recycling urban stormwater via aquifers

2012 ◽  
Vol 65 (9) ◽  
pp. 1692-1695 ◽  
Author(s):  
D. Page ◽  
D. Gonzalez ◽  
P. Dillon

With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

2009 ◽  
Vol 30 (1) ◽  
pp. 20
Author(s):  
Declan Page ◽  
Simon Toze

Worldwide, there is an increasing interest in the recharge of aquifers as a method for augmenting urban water supplies. Managed aquifer recharge (MAR) can utilise a variety of non-traditional source waters including urban stormwater and reclaimed water from sewage effluent. However, these alternate water sources may contain a wide range of pathogenic hazards that pose risks to human health. Hence the safe use of recycling water via aquifers requires potential risks to be reduced to acceptable levels. This article outlines the approach recommended by the draft Australian Guidelines for Water Recycling (AGWR) (Phase 2C Managed Aquifer Recharge) to quantify the aquifer treatment using a quantitative microbial risk assessment (QMRA) approach.


2008 ◽  
Vol 57 (6) ◽  
pp. 843-847 ◽  
Author(s):  
C. M. Davies ◽  
S. M. Petterson ◽  
C. Kaucner ◽  
N. J. Ashbolt ◽  
V. G. Mitchell ◽  
...  

Pathogenic microorganisms have been identified as the main human health risks associated with the reuse of treated urban stormwater (runoff from paved and unpaved urban areas). As part of the Smart Water initiative (Victorian Government, Australia), a collaborative evaluation of three existing integrated stormwater recycling systems, and the risks involved in non-potable reuse of treated urban stormwater is being undertaken. Three stormwater recycling systems were selected at urban locations to provide a range of barriers including biofiltration, storage tanks, UV disinfection, a constructed wetland, and retention ponds. Recycled water from each of the systems is used for open space irrigation. In order to adequately undertake exposure assessments, it was necessary to quantify the efficacy of key barriers in each exposure pathway. Given that none of the selected treatment systems had previously been evaluated for their treatment efficiency, experimental work was carried out comprising dry and wet weather monitoring of each system (for a period of 12 months), as well as challenging the barriers with model microbes (for viruses, bacteria and parasitic protozoa) to provide input data for use in Quantitative Microbial Risk Assessment.


2020 ◽  
Author(s):  
Costantino Masciopinto ◽  
Michele Vurro ◽  
Nicola Lorusso ◽  
Domenico Santoro ◽  
Charles N. Haas

<p>The Municipality of Fasano (Puglia, Italy), i.e. owning one of 32 managed aquifer recharge (MAR) sites in operation in the Puglia region, has pioneered the reuse of tertiary-treated municipal effluent for both soil irrigations and the containment of seawater intrusion via groundwater recharge by ditches.</p><p>In this work, quantitative microbial risk assessment (QMRA) methodologies have been applied to assess the degree of safety associated with such integrated practices by assessing the risks for public health resulting from the exposure to the reclaimed water. Escherichia coli (E.coli) dose-response model was used in this work since the pathogenic E.coli is reported to potentially occur in reclaimed water obtained from treated municipal effluents. The target count of pathogens ingested during swimming or inoculated by contaminated (uncooked) vegetables and fruits, was determined from the Monte Carlo Markov Chain (MCMC) Bayesian procedure applied to the results obtained from a monitoring campaign carried out in 2019. An optimization routine was applied in order to determine the most probable target pathogen count by minimizing the number of water samplings. The monitoring positions along the coast were defined by means of mathematical modeling, which highlighted the preferential pathways followed by pathogens when released into the fractured aquifer at a recharge operation flow rate of 10-30 L/s.</p><p>QMRA results indicated a negligible risk impact (12% probability of 0.4 infections per year) for soil irrigation practices and no impact on the seawater quality as a result of the additional treatment barrier provided by the so-called "soil-aquifer treatment" during the pathogen transport through the fractures of groundwater.</p><p> </p>


2016 ◽  
Vol 2 (4) ◽  
pp. 599-613 ◽  
Author(s):  
K. A. Hamilton ◽  
C. N. Haas

Legionellahas been identified as the responsible agent for two-thirds of waterborne disease outbreaks in the United States from 2011–2012.


2015 ◽  
Vol 6 (1) ◽  
pp. 30-39 ◽  
Author(s):  
D. W. Page ◽  
K. Barry ◽  
D. Gonzalez ◽  
A. Keegan ◽  
P. Dillon

Targeted stormwater event-based monitoring of adenovirus, Cryptosporidium and Campylobacter, the human health reference pathogens of viruses, protozoa and bacteria, respectively, was undertaken to determine numbers prior to water recycling via an aquifer. This allowed the determination of a 95th percentile of reference pathogen numbers in stormwater (2 n/L for adenoviruses, 1.4 n/L for Cryptosporidium and 11 n/L for Campylobacter) and was used in a quantitative microbial risk assessment to determine the required microbial inactivation targets. Log10 removals through treatments and/or control measures to manage pathogen risks were determined for different end uses based on the 95th percentile numbers. Public open space irrigation was found to require 1.6 log10 reduction for viruses, 0.6 log10 for protozoa and 1.2 log10 for bacteria; third pipe systems which include potential exposure through toilet flushing and washing machine use require 2.7 log10 reduction for viruses, 1.8 log10 for protozoa and 2.3 log10 for bacteria; and drinking water requires 5.8 log10 reduction for viruses, 4.8 log10 for protozoa and 5.3 log10 for bacteria. These results are the first reported for an Australian urban stormwater site with sufficient data for a drinking water risk assessment.


2021 ◽  
Vol 5 (4) ◽  
pp. 1-19
Author(s):  
Joanne Vanderzalm ◽  
Bruce Naumann ◽  
Simon Higginson ◽  
Declan Page ◽  
Andrew Jones ◽  
...  

Managed aquifer recharge (MAR) can improve water security by using aquifers to store water when it is abundant until required for future use and can increase the use of urban stormwater and treated wastewater to reduce the demand on traditional surface water and groundwater supplies. Recently, two Australian examples were showcased internationally as sustainable and economic MAR: Perth’s groundwater replenishment scheme (GWRS) with recycled water to increase security of urban water supply and a multi-site urban stormwater MAR scheme for suburban non-potable water supply in Salisbury, Adelaide. This paper provides a synopsis of these Australian exemplars of sustainable and economic MAR.


2016 ◽  
Vol 14 (4) ◽  
pp. 571-589 ◽  
Author(s):  
S. R. Petterson ◽  
N. J. Ashbolt

Quantitative microbial risk assessment (QMRA), the assessment of microbial risks when model inputs and estimated health impacts are explicitly quantified, is a valuable tool to support water safety plans (WSP). In this paper, research studies undertaken on the application of QMRA in drinking water systems were reviewed, highlighting their relevance for WSP. The important elements for practical implementation include: the data requirements to achieve sufficient certainty to support decision-making; level of expertise necessary to undertake the required analysis; and the accessibility of tools to support wider implementation, hence these aspects were the focus of the review. Recommendations to support the continued and growing application of QMRA to support risk management in the water sector are provided.


Sign in / Sign up

Export Citation Format

Share Document