A stochastic optimization approach for integrated urban water resource planning

2013 ◽  
Vol 67 (7) ◽  
pp. 1634-1641 ◽  
Author(s):  
Y. Huang ◽  
J. Chen ◽  
S. Zeng ◽  
F. Sun ◽  
X. Dong

Urban water is facing the challenges of both scarcity and water quality deterioration. Consideration of nonconventional water resources has increasingly become essential over the last decade in urban water resource planning. In addition, rapid urbanization and economic development has led to an increasing uncertain water demand and fragile water infrastructures. Planning of urban water resources is thus in need of not only an integrated consideration of both conventional and nonconventional urban water resources including reclaimed wastewater and harvested rainwater, but also the ability to design under gross future uncertainties for better reliability. This paper developed an integrated nonlinear stochastic optimization model for urban water resource evaluation and planning in order to optimize urban water flows. It accounted for not only water quantity but also water quality from different sources and for different uses with different costs. The model successfully applied to a case study in Beijing, which is facing a significant water shortage. The results reveal how various urban water resources could be cost-effectively allocated by different planning alternatives and how their reliabilities would change.

2012 ◽  
Vol 433-440 ◽  
pp. 1213-1218 ◽  
Author(s):  
Cheng Yao Peng ◽  
Jie Zhang

The world wide water crisis we are facing nowadays is no longer how to acquire new water resource, but rather how to manage the available water resource. The water resource management practices in China are still under the guidance following conventional mindset and compliances. It was yet brought up to people’s attention that water resource planning is a crucial element of urban planning, not to mention the effort that should be spent in investigating and exploring the potential value of water to economy, esthetics and social development. This paper introduced the practices of Singapore government in managing its local water resources, i.e. recovery of the polluted water environment in its early years, integrated planning of catchment and reservoirs for stormwater storage, acquiring new resource to supplement and replacing conventional water resource, establishing public outreach network for water demand management and water resource protection, adopting water sensitive urban design to rediscover the added value of water resource to urban development, etc. By reviewing the mechanism of Singapore’s practices on sustainable planning, the existing urban water resources shortage situation in China would be addressed and suggestion for urban water resource sustainable planning and use would also be given.


1970 ◽  
Vol 6 (4) ◽  
pp. 148-157 ◽  
Author(s):  
V. C. Robertson

Land and water resources must be identified, characterized and quantified as an essential preliminary to agricultural development. Some of the techniques employed are described and discussed. The successful exploitation of these resources demands an accurate appraisal of socio-economic targets, which themselves must be amenable to adjustment in the light of fresh information on resource availability. Human understanding, if not compassion, is a desirable attribute of the planner.


2016 ◽  
Vol 20 (5) ◽  
pp. 1869-1884 ◽  
Author(s):  
Claire L. Walsh ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler ◽  
Aidan Burton ◽  
Richard J. Dawson ◽  
...  

Abstract. Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.


Sign in / Sign up

Export Citation Format

Share Document