scholarly journals Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor

2010 ◽  
Vol 76 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
Bing-Jie Ni ◽  
Bao-Lan Hu ◽  
Fang Fang ◽  
Wen-Ming Xie ◽  
Boran Kartal ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a promising new process to treat high-strength nitrogenous wastewater. Due to the low growth rate of anaerobic ammonium-oxidizing bacteria, efficient biomass retention is essential for reactor operation. Therefore, we studied the settling ability and community composition of the anaerobic ammonium-oxidizing granules, which were cultivated in an upflow anaerobic sludge blanket (UASB) reactor seeded with aerobic granules. With this seed, the start-up period was less than 160 days at a NH4 +-N removal efficiency of 94% and a loading rate of 0.064 kg N per kg volatile suspended solids per day. The formed granules were bright red and had a high settling velocity (41 to 79 m h−1). Cells and extracellular polymeric substances were evenly distributed over the anaerobic ammonium-oxidizing granules. The high percentage of anaerobic ammonium-oxidizing bacteria in the granules could be visualized by fluorescent in situ hybridization and electron microscopy. The copy numbers of 16S rRNA genes of anaerobic ammonium-oxidizing bacteria in the granules were determined to be 4.6 � 108 copies ml−1. The results of this study could be used for a better design, shorter start-up time, and more stable operation of anammox systems for the treatment of nitrogen-rich wastewaters.

1999 ◽  
Vol 40 (8) ◽  
pp. 57-62 ◽  
Author(s):  
A. Pun˜al ◽  
J. M. Lema

The start-up and optimisation of a 380 m3 UASB reactor (Up-flow Anaerobic Sludge Blanket) treating wastewater from a fish-canning factory was carried out. At the beginning of the operation the Organic Loading Rate (OLR) was 1 kg COD/m3·d. Then, the load was gradually increased in steps of 50% OLR until the final capacity of the system (4 kg COD/m3·d) was achieved. Wastewater characteristics were highly dependent on the canned product (mussel, tuna, sardines, etc.). In spite of that, a stable operation working at a hydraulic retention time (HRT) of 2 days was maintained. Total Alkalinity (TA) always presented values higher than 3 g CaCO3/l, while the IA/TA ratio (Intermediate Alalinity/Total Alkalinity) was always maintained lower than 0.3. In order to improve granulation conditions, upward velocities from 0.5 to 0.8 m/h were applied. The highest values caused the washout of non-granulated biomass from the reactor, optimum operation being achieved at an upward velocity of 0.7 m/h.


Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Wei-Yu Chen ◽  
Lucia Kraková ◽  
Jer-Horng Wu ◽  
Domenico Pangallo ◽  
Lenka Jeszeová ◽  
...  

Tetramethylammonium-degrading methanogenic consortia from a complete-mixing suspended sludge (CMSS) and an upflow anaerobic sludge blanket (UASB) reactors were studied using multiple PCR-based molecular techniques and shotgun proteomic approach. The prokaryotic 16S rRNA genes of the consortia were analyzed by quantitative PCR, high-throughput sequencing, and DGGE-cloning methods. The results showed that methanogenicarchaeawere highly predominant in both reactors but differed markedly according to community structure. Community and proteomic analysis revealed thatMethanomethylovoransandMethanosarcinawere the major players for the demethylation of methylated substrates and methane formation through the reduction pathway of methyl-S-CoM and possibly, acetyl-CoA synthase/decarbonylase-related pathways. Unlike high dominance of oneMethanomethylovoranspopulation in the CMSS reactor, diverse methylotrophicMethanosarcinaspecies inhabited in syntrophy-like association with hydrogenotrophicMethanobacteriumin the granular sludge of UASB reactor. The overall findings indicated the reactor-dependent community structures of quaternary amines degradation and provided microbial insight for the improved understanding of engineering application.


2020 ◽  
Vol 21 (1) ◽  
pp. 31-39
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Reri Afrianita ◽  
Ilham Hagi Putra

ABSTRACTAnammox process is a more practical alternative in biological nitrogen removal compared to conventional nitrification-denitrification processes. This process conducted at the optimum temperature of 370C. Indonesia, as a tropical country, has the potential for the application of anammox processes to remove nitrogen in wastewater. The purpose of this study was to analyze the efficiency of nitrogen removal in the anammox process using the Up-Flow Anaerobic Sludge Blanket (UASB) reactor at ambient temperature with variations in the hydraulic retention time (HRT) of 24 hours and 12 hours, at the laboratory scale. Samples are measured twice a week using a UV-Vis spectrophotometer. As a seeding sludge for start-up, the reactor was inoculated with granular anammox bacteria genus Candidatus Brocadia. At the stable operation, the ratio of ΔNO2--N:ΔNH4+-N and ΔNO3--N:ΔNH4+-N approach the stoichiometry of the anammox process were 1.20 and 0.21, respectively. The performance of nitrogen removal with 24-hour HRT obtained a maximum nitrogen removal rate (NRR) of 0.113 kg-N/m3.d with nitrogen loading rate (NLR) 0.14 kg-N/m3.d, and at 12-hour HRT, maximum NRR  of 0.196 kg-N/m3.d with NLR 0,28 kg-N/m3.d. Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) maximum for HRT 24 hours were 82% and 77%, respectively while HRT 12 hours were 72% and 68%, respectively. The anammox process operated stably in the tropical temperature with a temperature range of 23-280C on a laboratory scale using the UASB reactor.Keywords: anammox, nitrogen, temperature, tropical, uasb.ABSTRAKProses anammox menjadi alternatif yang lebih efektif dalam penyisihan nitrogen secara biologi dibandingkan dengan proses konvensional nitrifikasi-denitrifikasi. Proses ini berlangsung optimum pada suhu 370C. Indonesia sebagai negara tropis memiliki potensi untuk aplikasi proses anammox untuk menghilangkan nitrogen pada air limbah. Penelitian ini bertujuan untuk menganalisis efesiensi penyisihan nitrogen pada proses anammox menggunakan Up-Flow Anaerobic Sludge Blanket (UASB) reaktor pada suhu ambien dengan variasi Waktu Tinggal Hidrolik (WTH) 24 jam dan 12 jam, pada skala laboratorium. Sampel diukur dua kali setiap minggu menggunakan spektrofotometer UV-Vis. Sebagai seeding sludge (lumpur biakan) untuk start-up (memulai) reaktor digunakan bakteri anammox genus Candidatus Brocadia berbentuk granular. Berdasarkan hasil pengukuran, didapatkan nilai rasio ΔNO2--N:ΔNH4+-N dan ΔNO3--N:ΔNH4+-N mendekati stoikiometri proses anammox yaitu 1,20 dan 0,21. Kinerja penyisihan nitrogen dengan WTH 24 jam didapatkan nilai tingkat penyisihan nitrogen (TPyN ) maksimum 0,113 kg-N/m3.h pada tingkat pemuatan nitrogen (TPN) 0,14 kg-N/m3.h, dan WTH 12 jam nilai TPyN  maksimum 0,196 kg-N/m3.h pada TPN 0,28 kg-N/m3.h. Nilai efisiensi konversi amonia (EKA) dan efisiensi penyisihan nitrogen (EPN) maksimum pada WTH 24 jam berturut-turut adalah 82% dan 77%, sedangkan pada WTH 12 jam berturut-turut adalah 72% dan 68%. Penelitian membuktikan bahwa proses anammox dapat berlangsung stabil pada daerah tropis dengan suhu terukur 21-290C pada skala laboratorium menggunakan UASB reaktor. Kata kunci: Anammox, nitrogen, temperatur, tropis, uasb.


1990 ◽  
Vol 22 (9) ◽  
pp. 167-174 ◽  
Author(s):  
S. S. Cheng ◽  
J. J. Lay ◽  
Y. T. Wei ◽  
M. H. Wu ◽  
G. D. Roam ◽  
...  

During the last two years,twenty-seven bioreactors of upflow anaerobic sludge blanket(UASB) process were constructed and operated well to treat 3,300 m3/day of winery wastewater in six winery plants in Taiwan. Each UASB reactor was installed with an internal filter and a side-armed sludge settler to separate gas-liquid-solid effectively in 127 m3 of reactor volume.These six plants established good performance of UASB process with different organic loadings depending on different characteristics of the winery wastewater. Start-up performance of the modified UASB process in four winery plants was investigated.Bioactivity of anaerobic sludge in each UASB was evaluated by means of Biochemical Methane Potential (BMP)test. Biokinetics of Monod and Haldane models were employed to interpret the different sludge characteristics in terms of gas production rate. Scanning electronic microscopy also showed different morphology of sludge granules in three UASB systems.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 509-515 ◽  
Author(s):  
Huub J. Gijzen ◽  
Frank Kansiime

The start-up and performance of an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Polyurethane Carrier Reactor (PCR) was investigated under similar operational conditions. The presence of polyurethane cubes as a carrier material in the PCR resulted in fast reactor start-up due to quick immobilization of methanogenic associations. Start-up of the UASB was slower compared to the PCR, which was mainly reflected in a lower biogas production and acetate degradation efficiency. However, when enough biomass had accumulated in the UASB reactor after 15 weeks of operation, the performance of the two reactors was almost the same in terms of biogas production and volatile fatty acids degradation. Efficient VFA degradation (about 90%) and biogas production (5.2 l/l.d) were achieved at an organic loading rate of 13.2 g/l.d) and HRT of 6 h. When hydraulic retention time was subsequently reduced from 6 to 2 h, the performance of the UASB reactor was better than that of the PCR. The inferior performance of the PCR may have been attributed to channelling of the influent in the reactor at high liquid flow rate.


2013 ◽  
Vol 67 (5) ◽  
pp. 1034-1042 ◽  
Author(s):  
P. G. S. Almeida ◽  
A. K. Marcus ◽  
B. E. Rittmann ◽  
C. A. L. Chernicharo

The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m−3 d−1, and the OLR applied to the TFs was 0.30–0.65 kgCOD m−3 d−1 (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH4+-N removal (80–95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L−1) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m−3 d−1, due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.


2012 ◽  
Vol 534 ◽  
pp. 221-224
Author(s):  
Fei Yan ◽  
Jin Long Zuo ◽  
Tian Lei Qiu ◽  
Xu Ming Wang

It took 55 days to start up a lab-scale upflow anaerobic sludge blanket (UASB) reactor at ambient temperature 27-28 oC by using the synthetic wastewater, and piggery wastewater was used as the influent after the reactor start-up. From day 120 onwards, COD removal efficiency maintained in the range of 85% to 95% with 6.79-9.66 kg COD/ (m3•d) of volume loading, and the effluent COD concentration ranged between 400 mg/L and 600 mg/L. Granular sludge formation was observed in the reactor after 40-day operation, and the sludge diameter reached 2-4 mm in the 120 day-old reactor. The pH changes in the influent had little influence on COD removal from piggery wastewater using the UASB reactor.


1986 ◽  
Vol 18 (12) ◽  
pp. 55-69 ◽  
Author(s):  
M. E. Souza

This paper describes and discusses the principal ideas and parameters related to the application, design and operation of wastewater treatment systems using the upflow anaerobic sludge blanket reactor (UASB). The differences in the process brought about by the high or low concentration of organic material in the wastewater to be treated are pointed out in each consideration. The purpose of this paper is to make the development of simple, but safe and efficient UASB reactor treatment units, by technicians not necessarily highly specialized in the subject, possible. It also attempts to point out problems which are not yet completely solved in order to help in the preparation of future research and development plans. A number of possible questions that deal with the following subjects are discussed:–types of waste which can be treated by the UASB reactor–concentrated wastes (for example, stillage from sugar-cane) and diluted wastes (for example, domestic sewage)–necessity of pre- and post-treatment–temperature–shape and dimensions of the reactor–criteria and details for design–start-up, operation and control of the unit–forecasts of efficiency, costs, etc.


Sign in / Sign up

Export Citation Format

Share Document