scholarly journals A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters

2014 ◽  
Vol 70 (4) ◽  
pp. 691-697 ◽  
Author(s):  
Javier Guerrero ◽  
Albert Guisasola ◽  
Juan A. Baeza

This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A2/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 105-113 ◽  
Author(s):  
P. Ingildsen ◽  
C. Rosen ◽  
K.V. Gernaey ◽  
M.K. Nielsen ◽  
T. Guildal ◽  
...  

The biological phosphorus removal process is often implemented at plants by the construction of an anaerobic bio-p tank in front of the traditional N removing plant configuration. However, biological phosphorus removal is also observed in plant configurations constructed only for nitrogen removal and simultaneous or post-precipitation. The operational experience with this “accidental” biological phosphorus removal is often mixed with quite a lot of frustration, as the process seems to come and go and hence behaves quite uncontrollably. The aim of this work is to develop ways of intentionally exploiting the biological phosphorus process by the use of instrumentation, control and automation to reduce the consumption of precipitants. Means to this end are first to calibrate a modified ASM2d model to a full-scale wastewater treatment plant (WWTP), including both biological and chemical phosphorus removal and a model of the sedimentation process. Second, based on the calibrated model a benchmark model is developed and various control strategies for biological phosphorus removal are tested. Experiences and knowledge gained from the strategies presented and discussed in this paper are vital inputs for the full-scale implementation of a control strategy for biological phosphorus removal at Avedøre WWTP, which is described in another paper. The two papers hence show a way to bridge the gap from model to full implementation.



2006 ◽  
Vol 53 (4-5) ◽  
pp. 133-141 ◽  
Author(s):  
C. Rosen ◽  
P. Ingildsen ◽  
T. Guildal ◽  
T. Munk Nielsen ◽  
M.K. Nielsen ◽  
...  

In this paper, a control strategy for introducing enhanced biological phosphorus removal (EBPR) in an alternating plant designed for enhanced biological nitrogen removal (EBNR) is presented. Alternating aerobic and anaerobic conditions to promote EBPR are provided by controlling the phases of the operational cycle, instead of a separate anaerobic volume. By utilising the control schemes already built in the STAR® control system for nitrogen removal, the control strategy is fully integrated in the system. The control system relies on on-line measurements of nitrogen (ammonia and/or nitrate) and orthophosphate. The control strategy has been implemented in full-scale operation at the Avedøre wastewater treatment plant in Denmark and the results show clear indications of success. The control strategy has operated robustly for several months with a 60% decrease in use of precipitation chemicals.



2001 ◽  
Vol 43 (3) ◽  
pp. 183-189 ◽  
Author(s):  
C. Y. Dassanayake ◽  
R. L. Irvine

A control strategy was developed for enhanced biological phosphorus removal (EBPR) in a Sequencing Batch Reactor (SBR). Unlike past research that focused on maximizing polyhdroxyalkanoate (PHA) formation during the anaerobic period, this study investigated some of the factors that govern aerobic PHA dynamics and its efficient regulation during phosphate (P) uptake. Influent COD, influent P, and the time for aeration were critical factors that governed PHA use and P uptake during aerated react. Unnecessary PHA oxidation (i.e., in the absence of extracellular P) occurred if the time for aerated react exceeded the time required for P uptake. By adjusting the aeration time to that required for P uptake, residual PHA was sustained in the SBR and excess phosphate uptake reaction potential (PRP) was generated for use during transient influent excursions in P. Unlike space oriented systems, the time for react is simply adjusted in the SBR. Because residual PHA is easily maintained once achieved, high influent COD events can be harnessed to increase or sustain excess PRP for management of expected variations in influent P.





1994 ◽  
Vol 29 (10-11) ◽  
pp. 135-143 ◽  
Author(s):  
R. F. Gonçalves ◽  
L. Le Grand ◽  
F. Rogalla

This paper introduces biological phosphorus removal (Bio-P) from wastewater on a submerged biofilter. Pilot scale research was carried out over a period of two years using a floating upflow aerated filter, originally designed for nitrification and denitrification of sewage. The factors which influence Bio-P on fixed film processes and the possible biofilter configurations which eliminate C, N and P are discussed. The procedures are applicable to all types of treatment plants using biofilters, both new and already in existence, making no distinction between the different processes available today, co-current and counter-current filters. Biological phosphorus removal can be associated to the different treatment levels required: organic matter removal; secondary nitrification secondary nitrification and denitrification. For the third option - complete nutrient removal, treatment is completed with a hydraulic retention time in the filter bed of under four hours. Because of the simultaneous filtration with effluent SS below 10 mg/l, low phosphorus residuals can be achieved by Bio-P alone. The modifications required for setting up this operating procedure on any treatment plant are presented.



2015 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Mohammed Siwan Shamkhi

The combination between the enhance biological phosphorus removal EBPR process and chemical phosphorous precipitation process removal from wastewater to avoid the instability of the biological phosphorus removal process due to temperature variation has been simulated and optimized by implementing three different strategies in the GPS-X 5.0 modeling and simulation software (Hydro mantis). The results were demonstrated that the annual consumption of alum for the three different phosphorus control strategies (side stream line dosing only, wastewater line dosing only and dosing at both wastewater and side stream lines) were 290, 80 and 68 tons Alum/year respectively. Therefore, the implement of both wastewater and side stream lines dosing strategy show a better phosphorus removal choice in terms of effluent quality and amount of alum used.



1993 ◽  
Vol 28 (10) ◽  
pp. 275-282 ◽  
Author(s):  
S. Marklund

The aeration tank in a small scale wastewater treatment plant was converted to a sequencing batch reactor (SBR) with a maximum volume of approx. 27 m3. The main purpose of this study was to examine low temperature biological phosphorus removal (BPR). The wastewater temperature varied during the study between 3 and 8°C, with a water temperature at or below 5°C during 7 months of the year. The SBR unit has been in operation from the end of 1989, the study period discussed here covered July 1991 - December 1992. SBR cycle time was varied between 6 and 12 hours, giving a total daily treatment capacity of between 18 and 36 m3. The influent biological oxygen demand - 7 days (BOD7) levels varied between 88 and 165 mg/l. Corresponding phosphorus levels were between 3.10 and 9.55 mg/l The mean effluent level of phosphorus was 1.57 mg/l and the BOD7 value was 23 mg/l. This gives a mean total phosphorus reduction of 74% and a BOD7 reduction of 81 %. During the study, mean supernatant suspended solids (SS) levels were quite high, at around 36 mg/l. This high SS level contributed a major part of both outlet phosphorus as well as BOD7 value. Effluent soluble values for phosphorus and BOD7 were 0.79 mg/l and 9 mg/l. The supernatant SS component of BOD7 and phosphorus increased at lower temperatures. It was not possible to reduce or balance this increase by increased cycle time or increased settling time within the maximum cycle time available (12 hours). Stable low supernatant phosphorus and BOD7 levels are thus to a large degree controlled by the effluent SS level. A maximum of 20 mg/l supernatant SS is necessary to reach target supernatant values of less than 1 mg/l of phosphorus and 15 mg/l of BOD7.



1996 ◽  
Vol 34 (1-2) ◽  
pp. 285-292 ◽  
Author(s):  
P. R. Thomas ◽  
D. Allen ◽  
D. L. McGregor

This study was undertaken to optimise phosphorus removal by incorporating a chemical dosing facility in an existing biological nutrient removal activated sludge plant at Albury in Australia. Results of pilot plant trials and jar tests indicated that both alum and ferric chloride successfully reduced the orthophosphate concentrations with only a minor variation in the chemical costs. However, alum was chosen as the preferred chemical for use in the full-scale plant and tests showed that alum precipitation combined with biological nutrient removal lowered the orthophosphate (ortho-P) concentrations to as low as 0.01 mg/L with average total phosphorus (total-P) levels of around 0.5 mg/L. It is concluded that maximising total phosphorus removal in the treatment plant would require optimising biological phosphorus removal, applying correct chemical dosages to varying mixed liquor orthophosphate concentrations, adequate mixing, suitable pH values and minimising suspended solids in the clarifier effluent.



Sign in / Sign up

Export Citation Format

Share Document