The practical influence of rapid mixing on coagulation in a full-scale water treatment plant

2014 ◽  
Vol 71 (4) ◽  
pp. 566-571 ◽  
Author(s):  
Demitri Allerdings ◽  
Gerrit Förster ◽  
Ekaterina Vasyukova ◽  
Wolfgang Uhl

This study focuses on the effect of rapid mixing on the coagulation efficiency in a full-scale drinking-water treatment plant and discusses the mechanisms involved in the floc-formation process. The results refer to three periods of operation of the waterworks when no mechanical mixing was provided in the tanks for coagulant dosing due to mechanical failure of the rapid mixers. Although a certain deterioration of the subsequent flocculation process was observed, as assessed using the data for suspended solids, turbidity, and chemical oxygen demand, the overall water treatment performance was not affected. This suggests an insignificant role for intense rapid mixing in sweep flocculation during full-scale water treatment and reveals the potential to reduce the required energy costs for mechanical mixers.

2021 ◽  
Author(s):  
Zhiyuan Liu ◽  
Min Rui ◽  
Shuili Yu

Abstract The occurrence of titanium dioxide nanoparticle (TNP), an emerging contaminant, in Taihu Lake of China was investigated. Ti was present at a concentration of 224 ± 59 µg/L in the water source of east Taihu Lake. Approximately 0.19% of the Ti-containing matter was at the nano-scale. Scanning Electron Microscope analysis verified the existence of Ti-containing components, such as TiOX and FeTiOX. Furthermore, Ti K-edge X-ray absorption near-edge structure spectroscopy was used to detect the phase composition of nano-scaled Ti-containing matter. The spectra showed the three characteristic peaks of TiO2 in the samples, suggesting the occurrence of TNP in Taihu Lake. A least-squares linear combination fitting analysis indicated that the TNP concentration in the water source was 0.86 µg/L, with a crystal composition of 0.44 ± 0.1 µg/L amorphous, 0.14 ± 0.03 µg/L anatase and 0.28 ± 0.06 µg/L rutile. The removal performance of the TNP at a full-scale conventional drinking water treatment plant indicated that 58.8% of TNP was removed via coagulation/sediment, sand filtration and disinfection/clear water reservoir. The coagulation/sediment process accounted for approximately 76.6% of the total removed TNP. The finished water contained 0.33 µg/L TNP with a crystal composition of 0.24 ± 0.13 µg/L anatase and 0.09 ± 0.05 µg/L rutile. This study is the first that reported the presence and transport of TNP in a drinking water treatment system.


Sign in / Sign up

Export Citation Format

Share Document