oxidation performance
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 241)

H-INDEX

42
(FIVE YEARS 11)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Yiwei Luo ◽  
Yonglong Li ◽  
Conghui Wang ◽  
Jing Wang ◽  
Wenming Liu ◽  
...  

Copper catalysts have been extensively studied for CO oxidation at low temperatures. Previous findings on the stability of such catalysts, on the other hand, revealed that they deactivated badly under extreme circumstances. Therefore, in this work, a series of KCC−1-supported copper oxide catalysts were successfully prepared by impregnation method, of which 5% CuO/KCC−1 exhibited the best activity: CO could be completely converted at 120 °C. The 5% CuO/KCC−1 catalyst exhibited better thermal stability, which is mainly attributed to the large specific surface area of KCC−1 that facilitates the high dispersion of CuO species, and because the dendritic layered walls can lengthen the movement distances from particle-to-particle, thus helping to slow down the tendency of active components to sinter. In addition, the 5% CuO/KCC−1 has abundant mesoporous and surface active oxygen species, which are beneficial to the mass transfer and promote the adsorption of CO and the decomposition of Cu+–CO species, thus improving the CO oxidation performance of the catalyst.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122073
Author(s):  
Wei Liao ◽  
Shangyan Zhou ◽  
Zhengcheng Wang ◽  
Fei Liu ◽  
Jianxin Cao ◽  
...  

2022 ◽  
Vol 517 ◽  
pp. 112043
Author(s):  
Yongzhao Zhang ◽  
Yifan Li ◽  
Zequan Zeng ◽  
Jiangliang Hu ◽  
Yaqin Hou ◽  
...  

Author(s):  
Qun Li ◽  
Ningjing Luo ◽  
Dong Xia ◽  
Peng Huang ◽  
Xiaobin Liu ◽  
...  

To elucidate the impact of interfacial effects, CuO/Co3O4 catalysts with nanosheet-like heterostructures were synthesized via a facile approach (i.e. precursor calcination) and utilized for benzene catalytic oxidation. The results indicated...


2021 ◽  
Vol 12 (6) ◽  
pp. 7903-7913

Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3/H2O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3/PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3/H2O2 in reducing nitrogen-containing compounds.


Sign in / Sign up

Export Citation Format

Share Document