Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter

2015 ◽  
Vol 71 (8) ◽  
pp. 1235-1240 ◽  
Author(s):  
Qiao Ma ◽  
Yuanyuan Qu ◽  
Wenli Shen ◽  
Jingwei Wang ◽  
Zhaojing Zhang ◽  
...  

The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures.

2008 ◽  
Vol 58 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Y. Yin ◽  
X. Zhang

This paper evaluated the impact of single-walled carbon nanotubes (SWCNTs) on the performance and activated sludge properties in an activated sludge wastewater reactor. The reactor was shock loaded with 270 mg/L of 90% purified SWCNTs after the reactor reached quasi-steady state and the reactor was monitored for 18 days after the shock loading. Various experimental parameters were measured and compared. Overall the addition of SWCNTs did not negatively impact the performance of the activated sludge reactor; on the other hand, SWCNTs improved sludge settleability and sludge dewaterability. The cake solids of the sludge were increased and the activated sludge flocs became less negatively charged. The positive impacts were more significant in Phase II (after running the reactor for one solids retention time, SRT) than that in Phase III (after running for additional 1.5 SRT).


2013 ◽  
Vol 51 (2) ◽  
pp. 137-144
Author(s):  
Naesung Lee ◽  
Jeung Choon Goak ◽  
Tae Yang Kim ◽  
Jongwan Jung ◽  
Young-Soo Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document