activity inhibition
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 94)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Bernadette Dian Novita ◽  
Ari Christy Mulyono ◽  
Ferdinand Erwin

Tuberculosis, caused by Mycobacterium tuberculosis (M.tb), remains the biggest infection burden in the word. Rifampin (RIF) and Isoniazid (INH) are the most effective antibiotics for killing M.tb. However, the resistance rate of rifampin and INH are high and lead to almost 35% treatment failure. Metformin enhanced anti tuberculosis efficacy in killing M. tuberculosis through several mechanism, firstly through autophagia mechanism and secondly by activating superoxide dismutase (SOD). Metformin activated mTOR and AMPK then induced more effective autophagy against M.tb. Superoxide Dismutase (SOD) is an enzyme produced in the host’s antioxidant defense system. SOD neutralizes reactive oxygen species (ROS) that excessively produced during phagocytosis process against M.tb. Excessive production of ROS associated with Th1 overactivation and leads into macrophage activity inhibition and excessive tissue damage. Metformin has ability in improving SOD level during inflammation.


2021 ◽  
Vol 954-955 ◽  
pp. 122082
Author(s):  
Neslihan Şahin ◽  
Elvan Üstün ◽  
Uğur Tutar ◽  
Cem Çelik ◽  
Nevin Gürbüz ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7095
Author(s):  
Galyna Volynets ◽  
Hanna Vyshniakova ◽  
Georgiana Nitulescu ◽  
George Mihai Nitulescu ◽  
Anca Ungurianu ◽  
...  

Staphylococcus aureus (S. aureus) is a causative agent of many hospital- and community-acquired infections with the tendency to develop resistance to all known antibiotics. Therefore, the development of novel antistaphylococcal agents is of urgent need. Sortase A is considered a promising molecular target for the development of antistaphylococcal agents. The main aim of this study was to identify novel sortase A inhibitors. In order to find novel antistaphylococcal agents, we performed phenotypic screening of a library containing 15512 compounds against S. aureus ATCC43300. The molecular docking of hits was performed using the DOCK program and 10 compounds were selected for in vitro enzymatic activity inhibition assay. Two inhibitors were identified, N,N-diethyl-N′-(5-nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2), which decrease sortase A activity with IC50 values of 160.3 µM and 207.01 µM, respectively. It was found that compounds 1 and 2 possess antibacterial activity toward 29 tested multidrug resistant S. aureus strains with MIC values ranging from 78.12 to 312.5 mg/L. These compounds can be used for further structural optimization and biological research.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4051
Author(s):  
Elżbieta Studzińska-Sroka ◽  
Agnieszka Galanty ◽  
Anna Gościniak ◽  
Mateusz Wieczorek ◽  
Magdalena Kłaput ◽  
...  

Herbal infusions are an underestimated and easy to intake a source of biologically active natural compounds (polyphenols), which, in the dissolved form, are more easily absorbed. Therefore, this study aimed to assess the potential of herbal infusions as a functional food to reduce postprandial hyperglycemia (inhibition of α-amylase and α-glucosidase) and to reduce the effects of increased blood glucose level (antioxidant effect-DPPH, CUPRAC, and Fe2+ chelating assays, as well as anti-inflammatory activity-inhibition of collagenase). We showed that polyphenols are present in the examined aqueous herbal infusions (including chlorogenic and gallic acids). Subsequently, our research has shown that herbal infusions containing cinnamon bark, mulberry leaves, and blackberry fruits most strongly inhibit glucose release from complex carbohydrates, and that all herbal infusions can, to different degrees, reduce the effects of elevated blood sugar. In conclusion, infusions prepared from herbal blends could be recommended to prevent type II diabetes.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1532
Author(s):  
Sheng Ma ◽  
Mengji Qiao ◽  
Yunlin Fu ◽  
Penglian Wei ◽  
Yingjian Li ◽  
...  

Agarwood is a highly economically important medicinal herb with widespread uses; however, the difference between the biological activities of artificial and wild agarwood is unclear. In this study, the alcohol-soluble extracts of agarwood produced by fungi and natural agarwood were used to determine the differences between the overall biological activities. The antioxidant ability (the clearance rates of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals, and total reducing power), anti-acetylcholinesterase, and anti-α-glucosidase activity were determined by ultraviolet-visible spectrophotometry. The results indicated that with 2 mg/mL alcohol-soluble extracts, the scavenging DPPH radical rates of the artificial agarwood samples were 93.74–102.31% of that of the wild agarwood, and the ABTS+ radical clearance rates of the artificial agarwood samples were 75.38–95.52% of that of the natural agarwood. With 3.5 mg/mL alcohol-soluble extracts, the artificial agarwood samples had a total reducing power of 63.07–80.29% of that of the wild agarwood. With 4 mg/mL alcohol-soluble extract, the acetylcholinesterase activity inhibition rates of the artificial agarwood samples were 102.56–109.16% of that of the wild agarwood. With 1 mg/mL alcohol soluble extracts, the α-glucosidase effect inhibitions rates of the artificial agarwood samples were 68.32–100.39% of that of the wild agarwood.


2021 ◽  
Vol 12 (5) ◽  
pp. 5983-5995

The given review summarizes the various molecular mechanisms responsible for the metabolic action of flavonoids as anticancer agents. Various types of flavonoids have proven to show biological & pharmacological activities like anti-inflammatory, antimicrobial, antioxidant, anticancer, anti-allergic, and antidiarrheal activities. The chemoprotective nature of flavonoids is also discussed due to their ability to inhibit topoisomerase enzymes at various stages of cancer, such as tumor initiation, promotion, and progression. The various biomolecular activities which are responsible for their role as the chemopreventive agent may be due to their antioxidative effect, anti-angiogenic properties, induction of protective enzymes, inhibitory action on the cell-like protein kinase activity inhibition, spreading of tumor cells, apoptosis induction, tumor cell invasion to name a few. There has been much-emerging evidence based on the versatility of flavonoids, their complex mechanism of action, lesser side effects, and varied pharmacological properties that make them potential anticancer agents. Challenges associated with their use in extraction, isolation, purification, and checking bioefficacy are also discussed.


Sign in / Sign up

Export Citation Format

Share Document