Sinks and sources of anammox bacteria in a wastewater treatment plant – screening with qPCR

2018 ◽  
Vol 78 (2) ◽  
pp. 441-451
Author(s):  
Linda Kanders ◽  
Maike Beier ◽  
Regina Nogueira ◽  
Emma Nehrenheim

Abstract The deammonification process, which includes nitritation and anammox bacteria, is an energy-efficient nitrogen removal process. Starting up an anammox process in a wastewater treatment plant (WWTP) is still widely believed to require external seeding of anammox bacteria. To demonstrate the principle of a non-seeded anammox start-up, anammox bacteria in potential sources must be quantified. In this study, seven digesters, their substrates and reject water were sampled and quantitative polymerase chain reaction (qPCR) was used to quantify both total and viable anammox bacteria. The results show that mesophilic digesters fed with nitrifying sludge (with high sludge ages) can be classified as a reliable source of anammox bacteria. Sludge hygienization and dewatering of digestate reduce the amount of anammox bacteria by one to two orders of magnitude and can be considered as a sink. The sampled reject waters contained on average >4.0 × 104 copies mL−1 and the majority of these cells (>87%) were viable cells. Furthermore, plants with side-stream anammox treatment appear to have higher overall quantities of anammox bacteria than those without such treatment. The present study contributes to the development of sustainable strategies for both start-up of anammox reactors and the possibility of improving microbial management in WWTPs.

2006 ◽  
Vol 54 (8) ◽  
pp. 93-100 ◽  
Author(s):  
E.I.P. Volcke ◽  
K.V. Gernaey ◽  
D. Vrecko ◽  
U. Jeppsson ◽  
M.C.M. van Loosdrecht ◽  
...  

In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).


2007 ◽  
Vol 56 (7) ◽  
pp. 21-31 ◽  
Author(s):  
D. Brdjanovic ◽  
M. Mithaiwala ◽  
M.S. Moussa ◽  
G. Amy ◽  
M.C.M. van Loosdrecht

This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.


2013 ◽  
Vol 8 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Abdolreza Khalili ◽  
Mohammad Reza Mohebi ◽  
Mohammad Mohebi ◽  
Farideh Ashouri

Starting up a wastewater treatment plant (WWTP) is one of the most important stages of operation. A new method was used to start Arak activated sludge WWTP up, which took in advantages of the other methods. Primarily just one of the basins was in the lane and wastewater entered the plant part by part. At first 1/30, second week 1/15, third week 1/6, and fourth week 1/3 of total inflow came to the plant. Observing little progress of biomass gain, some sludge from a similar treatment plant was added to the system, as seed. This procedure continued so the MLSS of the system, attained the 1/3 total design MLSS which was design MLSS of one basin. In the next two weeks, by using developed sludge of the self-system the second and third basins came in the lane and inflow increased to 2/3 and total flow, respectively. Finally after two months of beginning the start-up and one month after adding the seed total desired biomass was developed and the plant started to waste sludge. Because of cold weather start-up period took a longer time than expected. But even before developing biomass environment friendly results were achieved. After attaining design MLSS, BOD5 and COD removal from 40% and 60% increased to 90% and TSS removal from 70% reached to 96%. Less loading, less foam forming, no bacteriologic and chemical problems, better process control, using less seed, saving costs in sludge transport and avoiding relevant problems were the main advantages of this method.


2016 ◽  
Vol 11 (1) ◽  
pp. 47-55
Author(s):  
Nadeem Khalil ◽  
Tarique Ahmad

Amongst the technologies available, the up flow anaerobic sludge blanket (UASB) process has been one of the most widely applied methods for municipal waste water treatment especially in countries of warm climatic conditions like India. However, past about one decade has witnessed rapid decline in the UASB popularity and its implementation. There has been criticism from various sections on the performance of UASB reactors for not complying with the prescribed discharge standards. It is a general hypothesis that the UASB reactors are not meant for diluted waste water like municipal sewage when typically the BOD is less than 150 mg/l, COD 250 mg/l and sulphates are more than 150mg/l. An attempt has been made through this study to investigate the reasons on the basis of quality assessment and field observations on UASB reactors and it’s post-treatment of a newly commissioned (start-up) municipal (sewage) wastewater treatment plant commonly called ‘STP’ having capacity of 14 million litres per day (MLD). Study was aimed to know the gaps during the commissioning stage which could be related to poor removal efficiencies. This paper briefly discusses some issues related to operation and maintenance of the UASB plants with purpose for improvements.


2018 ◽  
Vol 13 (3) ◽  
pp. 566-582 ◽  
Author(s):  
Nadja Hvala ◽  
Darko Vrečko ◽  
Cirila Bordon

Abstract This paper presents the design of a plant-wide CNP (carbon-nitrogen-phosphorus) simulation model of a full-scale wastewater treatment plant, which will be upgraded for tertiary treatment to achieve compliance with effluent total nitrogen (TN) and total phosphorus (TP) limit values. The plant-wide model of the existing plant was first designed and extensively validated under long-term dynamic operation. The most crucial step was a precise characterization of input wastewater that was performed by extending the plant performance indicators both to a water line and sludge line and systematically estimating identifiable wastewater characterization parameters from plant-wide performance indicators, i.e. effluent concentrations, biogas and sludge production, and sludge composition. The thus constructed simulation model with standard activated sludge model (ASM2d) and anaerobic digestion model (MantisAD) overpredicted ortho-P and ammonia-N on the sludge line, indicating a need to integrate state-of-the-art physico-chemical minerals precipitation models to simulate plant-wide interactions more precisely. The upgraded plant with multimode anaerobic/anoxic/oxic configuration shows limited denitrification potential. Therefore, additional reject water treatment was evaluated to improve effluent TN and TP performance.


2017 ◽  
pp. 117
Author(s):  
S. Suneethi ◽  
Kurian Joseph

Release of nitrate and ammonia rich wastewaters into the natural waters promotes eutrophication, aquatic toxicity and deterioration in water quality. Anaerobic Ammonium Oxidation (ANAMMOX) process is an advanced biological nitrogen removal alternative to traditional nitrification – denitrification, which removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility to enrich ANAMMOX bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (An MBR) for N – removal is reported in this paper. The seed culture used was anaerobic digester sludge collected from a Sewage Treatment Plant (STP) in Chennai. Stabilization performance of An MBR is reported for a period of 250 days, for the presence of ANAMMOX bacteria and its sustained activity in terms of Nitrogen transformations to Ammonia, Nitrite and Nitrate along with Hydrazine and Hydroxylamine.


Sign in / Sign up

Export Citation Format

Share Document