scholarly journals Degradation and transformation of natural organic matter accountable for disinfection byproduct formations by UV photolysis and UV/chlor(am)ine

2018 ◽  
Vol 79 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Chanathip Hirun-Utok ◽  
Songkeart Phattarapattamawong

Abstract This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L−1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L−1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.

2002 ◽  
Vol 2 (5-6) ◽  
pp. 515-521 ◽  
Author(s):  
W. Liu ◽  
S.A. Andrews ◽  
J.R. Bolton ◽  
K.G. Linden ◽  
C. Sharpless ◽  
...  

The impact of UV irradiation on disinfection byproduct (DBP) formation was investigated for low pressure, medium pressure and pulsed UV technologies using a broad range of UV doses. Four classes of DBPs (THMs, HAAs, aldehydes and carboxylic acids) were examined. This enabled the determination of effects resulting from the direct action of UV irradiation on natural organic matter (aldehydes, carboxylic acids) as well as effects on the ultimate formation of chlorinated DBPs (THMs and HAAs) from secondary chlorination. For doses of less than 1,000 mJ/cm2, UV irradiation did not affect THM and HAA formation in subsequent chlorination processes, however higher UV doses resulted in lower ultimate concentrations of THMs and HAAs. UV irradiation also resulted in the formation of aldehydes and carboxylic acids at UV doses above 500 mJ/cm2, compounds that are known to adversely effect drinking water biostability.


2019 ◽  
Vol 78 ◽  
pp. 204-214 ◽  
Author(s):  
Nana Osei B. Ackerson ◽  
Alexis H. Killinger ◽  
Hannah K. Liberatore ◽  
Thomas A. Ternes ◽  
Michael J. Plewa ◽  
...  

2008 ◽  
Vol 42 (16) ◽  
pp. 6218-6223 ◽  
Author(s):  
Sanly Liu ◽  
May Lim ◽  
Rolando Fabris ◽  
Christopher Chow ◽  
Mary Drikas ◽  
...  

2018 ◽  
Vol 4 (5) ◽  
pp. 663-679 ◽  
Author(s):  
Kun Huang ◽  
Amisha D. Shah

Tertiary amines are prevalent in waters due to anthropogenic inputs and are known to enhance organic compound degradation while increasing disinfection by-product (DBP) formation, via the strong chlorinating agent, R3N–Cl+.


2009 ◽  
Vol 43 (15) ◽  
pp. 5982-5989 ◽  
Author(s):  
T. Bond ◽  
O. Henriet ◽  
E. H. Goslan ◽  
S. A. Parsons ◽  
B. Jefferson

2016 ◽  
Vol 96 ◽  
pp. 114-125 ◽  
Author(s):  
Yanjun Jiang ◽  
Joseph E. Goodwill ◽  
John E. Tobiason ◽  
David A. Reckhow

Sign in / Sign up

Export Citation Format

Share Document