Vacuum-UV photolysis of aqueous solutions of nitrate: effect of organic matter I. Phenol

1996 ◽  
Vol 93 (1) ◽  
pp. 7-19 ◽  
Author(s):  
M.C. Gonzalez ◽  
A.M. Braun
2018 ◽  
Vol 79 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Chanathip Hirun-Utok ◽  
Songkeart Phattarapattamawong

Abstract This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L−1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L−1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.


2008 ◽  
Vol 197 (2-3) ◽  
pp. 306-312 ◽  
Author(s):  
Natalia Quici ◽  
Marta I. Litter ◽  
André M. Braun ◽  
Esther Oliveros

2015 ◽  
Vol 72 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Yunleiyu Guo ◽  
Tingting Shen ◽  
Chen Wang ◽  
Jing Sun ◽  
Xikui Wang

The removal of caffeine (CAF) in aqueous solution by peroxymonosulfate oxidant activated with cobalt ion was investigated under a variety of operating conditions. The effects of various operating parameters, such as oxone and Co2+ concentrations, pH value, and the coexistence of dissolved organic matter and inorganic anions on the removal of CAF have been investigated. The removal efficiency increased with the increase in the concentrations of oxone and Co2+ ion added. The additions of chloride, bicarbonate, and sodium humate have negative effects on the removal of CAF. Near-neutral condition (5.0 < pH < 7.0) is favorable for the removal of CAF. Based on our experiments, 100% degradation of 50 mg/L CAF can be achieved within 4 minutes under the conditions of 1.00 mM oxone and 0.10 mM Co2+ ion at pH 5.0–7.0.


1975 ◽  
Vol 62 (11) ◽  
pp. 4266-4273 ◽  
Author(s):  
G. Black ◽  
R. L. Sharpless ◽  
T. G. Slanger ◽  
D. C. Lorents

1980 ◽  
Vol 12 (3) ◽  
pp. 249-261 ◽  
Author(s):  
Hélène Deslauriers ◽  
Guy J. Collin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document