scholarly journals Screening of two freshwater green microalgae in pulp and paper mill wastewater effluents in Nova Scotia, Canada

Author(s):  
Shabana Bhatti ◽  
Robert Richards ◽  
Patrick McGinn

Abstract In recent years, the use of microalgae feedstock has gained renewed interest in which the biomass can be processed into many marketable products such as animal/aqua feeds, bioplastics and fertilizers due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrient content. An algal biorefinery at an industrial site has the potential to sustainably and profitably convert carbon dioxide emissions into microalgal biomass and concomitantly reduce nitrogen and phosphorus from wastewaters. Industrial wastewaters are a potential alternative to traditional media used for large-scale microalgae cultivation. Microalgae have been used for treating wastewaters in different industries by taking advantage of their high capacity to remove nitrogen and phosphorus in waste streams. Pulp and paper mills are major consumers of water resources and discharge a huge amount of water to nearby lakes or rivers. The current research work investigated whether pulp and paper mill waste water is suitable for microalgae cultivation with the aim to achieve significant biomass production. Six different process waters from one Canadian pulp and paper mill were tested with two freshwater green microalgae. All of these waters were unable to support growth of microalgae due to inadequate nutrient concentrations, colour, turbidity and possible toxicity issues.

2011 ◽  
Vol 63 (3) ◽  
pp. 491-501 ◽  
Author(s):  
R. Dewi ◽  
J. A. Van Leeuwen ◽  
A. Everson ◽  
S. C. Nothrop ◽  
C. W. K. Chow

The use of coagulation and flocculation for tertiary treatment of pulp and paper mill effluent was investigated, where the evaluation was based on the removal of nitrogen (N), phosphorus (P) and BOD from post-coagulated wastewater. The study was undertaken on laboratory scale aerobic stabilisation basins (ASB). Two post coagulated (alum) wastewaters were studied, where the BOD:N:P ratios were 100:1.3:0.06 and 100:1.3:0.3. These wastewaters were treated in two identical concurrent simulations (A & B). The influent ratio for ‘A’ was selected representing the composition of actual coagulated Pinus radiata sulfite pulp effluent mixed with paper mill effluent. The input composition for ‘B’ represented a typical P concentration found in existing pulp and paper mill effluents. Unmodified sludge collected from a mill-pond was added at 4% v/v to each simulation replicating the treatment conditions at full-scale. Similar high percentage removals of BOD and COD occurred after 28 days (two HRTs) which were 94 and 67% respectively for ‘A’, and 98 and 70% respectively for ‘B’, where both remained at steady state during the third HRT. A statistical analysis of the data revealed that there was no significant difference in the sample variance of the BOD and COD results.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Virendra Kumar ◽  
Purnima Dhall ◽  
Rita Kumar ◽  
Yogendra Prakash Singh ◽  
Anil Kumar

Small-scale agro-based pulp and paper mills are characterized as highly polluting industries. These mills use Kraft pulping process for paper manufacturing due to which toxic lignified chemicals are released into the environment. Lack of infrastructure, technical manpower, and research and development facilities restricts these mills to recover these chemicals. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem, four bacteria were isolated from the premises of agro-based pulp and paper mill which were identified as species ofPseudomonas, Bacillus, Pannonibacter, andOchrobacterum. These bacteria were found capable of reducing COD up to 85%–86.5% in case of back water and 65-66% in case of back water : black liquor (60 : 40), respectively, after acclimatization under optimized conditions (pH 6.8, temperature 35°C, and shaking 200 rpm) when the wastewater was supplemented with nitrogen and phosphorus as trace elements.


2008 ◽  
Vol 43 (2-3) ◽  
pp. 161-171 ◽  
Author(s):  
Pierre Martel ◽  
Tibor Kovacs ◽  
Virginie Bérubé

Abstract Pulp and paper mill effluents have been reported to cause changes in reproductive indicators of fish in laboratory and field studies. These changes include reduced egg production and gonad size, and altered hormone levels and expression of secondary sex characteristics. We examined the performance of biotreatment plants for their potential in abating effects of pulp and paper mill effluents on fish reproduction under laboratory conditions. A bleached kraft mill effluent (BKME) treated in an aerated lagoon and a thermomechanical pulp mill effluent (TMPE) treated by aerobic sludge in a sequential batch reactor were selected for study. Mature fathead minnows (Pimephales promelas) were exposed to effluents before and after biotreatment under continuous renewal conditions for 21 days. Egg production was monitored daily, while morphometric parameters (length, weight, gonad size), secondary sexual characteristics, and steroid hormone and vitellogenin levels were measured at the end of the effluent exposure. The effluent from both mills before biotreatment impaired the reproductive capacity of minnows (egg production) at concentrations of 10 and 20% vol/vol, but not at 2% vol/vol. Exposure to biotreated effluents from both mills at concentrations of 2, 10, 20, and 40% vol/vol caused no significant differences in overall reproductive capacity of minnows as compared with controls. These results indicate that biotreatment can significantly improve the quality of a BKME and an effluent from a TMP mill with respect to the reproductive capacity of fish as determined in laboratory tests.


1992 ◽  
Vol 25 (2) ◽  
pp. 57-64
Author(s):  
C. G. Jardine

As part of the Remedial Action Plan (RAP) programs for the St. Lawrence and Spanish Rivers in Ontario, Canada, tainting evaluations were conducted using members of the Public Advisory Committees (PACs) and the RAP teams. Triangle test sensory evaluations were conducted on caged rainbow trout (Salmo gairdneri) exposed insitu upstream and downstream of the pulp and paper mill diffuser outfalls In the St. Lawrence River only, evaluations were conducted on indigenous yellow perch (Perca flavescens) caught upstream and downstream of the mill discharge . In both locations, the odour of the flesh from the caged trout exposed above the diffuser outfall was not judged significantly different from caged trout exposed downstream of the discharge. However, the indigenous perch caught downstream of the mill in the St. Lawrence River were judged by the panelists to have a significantly more objectionable odour than those caught upstream of the discharge. While the effluent tainting potential appears to have been eliminated in the Spanish River, further studies are required to determine the source and magnitude of tainting concerns in the St. Lawrence River. The sensory test and results reported here provide useful tools for evaluating the tainting potential of pulp mill discharges and for assessing perceived consumer quality of the fish exposed to these effluents.


1988 ◽  
Vol 20 (2) ◽  
pp. 143-152 ◽  
Author(s):  
A. Langi ◽  
M. Priha

The mutagenic properties of pulp and paper mill effluents were studied in three mills: bleached kraft mill with aerated lagoon treatment (Mill 1), bleached kraft mill with activated sludge treatment (Mill 2) and mechanical pulp/paper mill (Mill 3). Both treated and untreated effluents, process streams and molecular fractions were tested for mutagenicity (Ames test. Salmonella typhimurium TA100 and SCE sister chromatid exchange test, Chinese hamster ovary cells). To verify the potential environmental effects the mutagenic activity of concentrated recipient lake water (Mill 2) was also studied. The Ames mutagenicity of the bleached kraft mill effluent (BKME) originated from the first chlorination filtrate, SCE mutagenicity also occurred in the alkali extraction stage filtrate (Mill 1). No Ames mutagenicity was detected in the paper mill effluent, but it was SCE mutagenic. Activated sludge treatment of BKME removed both Ames and SCE mutagenicity, but the aerated lagoon treated BKME was still SCE mutagenic. No mutagenic activity was detected in the recipient water concentrates.


Sign in / Sign up

Export Citation Format

Share Document