Acceleration of the calculations for solving large problems using the boundary element method for the Stokes equations on GPU

2011 ◽  
Vol 8 (1) ◽  
pp. 189-197
Author(s):  
O.A. Solnyshkina

A creeping flow of a viscous fluid in a channel in 3D formulation is considered. The fluid motion is described by the Stokes equations. The problem is solved numerically using the boundary element method. The obtained results are compared with the analytical solution. To accelerate the calculations for solving large-scale problems, the software component of the matrix-vector product is developed and parallelized on the graphics processors. The paper presents the results of the GPU utilization for the considered problems.

Author(s):  
Yulia A. Itkulova ◽  
Olga A. Solnyshkina ◽  
Nail A. Gumerov

Several interesting effects discovered recently, such as “dynamic blocking” and “jamming” of emulsion flows in microchannels require in depth theoretical, computational, and experimental studies. The present study is dedicated to development of efficient computational methods and tools to understand the behavior of complex two-phase Stokesian flows. Application of the conventional boundary element method is frequently limited by the computational and memory complexity. The fast multipole methods provide O(N) type algorithms, which can further be accelerated by utilization of graphics processors. We developed efficient codes, which enable direct simulation of systems of tens of thousands of deformable droplets in three dimensions or several droplets with very high discretization of the interface. Such codes can be used for detailed visualization and studies of the structure of droplet flows in channels. Example computations include droplet dynamics in shear flows and in microchannels. We discuss results of simulations and details of the algorithm. We also consider that the present work is a step towards more realistic modeling of the microchannel dispersed flows as further development of the model is required to account for properties of thin films between the droplets, processes of coalescence, etc.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Nor Afifah Hanim Zulkefli ◽  
Yeak Su Hoe ◽  
Munira Ismail

In numerical methods, boundary element method has been widely used to solve acoustic problems. However, it suffers from certain drawbacks in terms of computational efficiency. This prevents the boundary element method from being applied to large-scale problems. This paper presents proposal of a new multiscale technique, coupled with boundary element method to speed up numerical calculations. Numerical example is given to illustrate the efficiency of the proposed method. The solution of the proposed method has been validated with conventional boundary element method and the proposed method is indeed faster in computation.


2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


2010 ◽  
Vol 439-440 ◽  
pp. 80-85
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang ◽  
Ya Qin Tian ◽  
Zhi Bing Chu

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper. In order to improve calculation time and accuracy, incompatible elements as interpolation functions were used in the algorithm. Elements were optimized by mixed incompatible elements and compatible elements. On the one hand, the difficult to satisfy precise coordinate was avoided which caused by compatible elements; on the other hand, the merits of MFM-BEM were retained. Through analysis of example, it was conclusion that calculation time and accuracy were improved by MFM-BEM, calculation continuity was also better than traditional FM-BEM. With increasing of degree of freedom, calculation time of MFM-BEM grew slower than the time of traditional FM-BEM. So MFM-BEM provided a theoretical basis for solving large-scale engineering problems.


1999 ◽  
Vol 65 (635) ◽  
pp. 1493-1497 ◽  
Author(s):  
Kenji AMAYA ◽  
Naoki NARUSE ◽  
Shigeru AOKI ◽  
Matsuho MIYASAKA

Sign in / Sign up

Export Citation Format

Share Document