scholarly journals Experimental and Clinical Observations on Amino Acids Metabolism in Hepatic Injury

1954 ◽  
Vol 42 (11) ◽  
pp. 805-820
1993 ◽  
Vol 28 (Supplement_1A) ◽  
pp. 111-117 ◽  
Author(s):  
Hiroshi Suzuki ◽  
Tomoya Tominaga ◽  
Hiroshi Mizuno ◽  
Mayumi Kouno ◽  
Michihiro Suzuki ◽  
...  

Amino Acids ◽  
2008 ◽  
Vol 37 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Torai Komano ◽  
Reiko (Yokoyama) Funakoshi ◽  
Yukari Egashira ◽  
Hiroo Sanada

1949 ◽  
Vol 89 (2) ◽  
pp. 245-268 ◽  
Author(s):  
Paul György ◽  
Harry Goldblatt

The present report on experimental hepatic injury is based on observations amassed during the last 9 years, comprising 1922 rats. It has been shown that there are several dietary factors which may intervene, singly or in combination, in the development of massive or zonal hepatic necrosis. Deficiency of sulfur-containing amino acids is only one of them. From the present studies, tocopherol emerges as an additional protective dietary factor. With regard to the development of massive hepatic necrosis tocopherol may compensate for the absence of sulfur-containing amino acids (cystine, methionine) and vice versa. As a further factor, the quality of dietary fat should be taken into consideration. Fats, like lard and cod liver oil, with a high content of unsaturated fatty acids enhance, whereas fats low in unsaturated fatty acids, such as crisco and butter, retard or prevent the development of massive hepatic necrosis. It is questionable whether with all these dietary factors the etiology of massive hepatic necrosis is completely defined. The interchangeability of sulfur-containing amino acids (cystine, methionine) and vitamin E as leading etiologic factors makes it difficult to accept pure deficiency as the basis of massive hepatic necrosis. The rôle of possible endogenous hepatotoxic substances and their neutralization by cystine (methionine) or tocopherol are discussed. Diffuse hepatic fibrosis is a regular occurrence in rats kept for 100 to 150 days on a diet low in lipotropic factors. Cystine, and, among the fats, lard and especially cod liver oil, have an enhancing effect on the production of hepatic cirrhosis. In rats fed rations free from cod liver oil, and with vegetable shortening such as crisco as source of fat, the incidence and severity of cirrhosis are reduced. Ceroid deposit accompanies cirrhosis only in rats which have been kept on a cirrhosis-producing diet containing fats with a high content of unsaturated fatty acids (cod liver oil, lard). Tocopherol, even when given in excessively large doses (30 mg. daily) will not prevent the formation of ceroid, and will reduce only slightly its total quantity. Under the same treatment the incidence and intensity of cirrhosis remain uninfluenced. Cellular injury in the form of degenerated or necrotic hepatic parenchymal cells, found singly or in small groups in and around the fibrous bands in the cirrhotic liver of rats, is a common occurrence. The fibrotic changes seem to begin, not in the portal spaces, but close to the central vein, although they are not as distinctly and exclusively pericentral as, for instance, in cardiac cirrhosis. Thus, experimental dietary cirrhosis is non-portal. The role of fat infiltration is discussed with special reference to the other microscopic changes found in hepatic cirrhosis. Acute necrotizing nephrosis or various stages of healing of this process are often found with great frequency in rats kept on a cirrhosis-producing diet.


2004 ◽  
Vol 29 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Lourdes Massieu ◽  
Teresa Montiel ◽  
Georgina Robles ◽  
Octavio Quesada

1997 ◽  
Vol 161 ◽  
pp. 505-510
Author(s):  
Alexandra J. MacDermott ◽  
Laurence D. Barron ◽  
Andrè Brack ◽  
Thomas Buhse ◽  
John R. Cronin ◽  
...  

AbstractThe most characteristic hallmark of life is its homochirality: all biomolecules are usually of one hand, e.g. on Earth life uses only L-amino acids for protein synthesis and not their D mirror images. We therefore suggest that a search for extra-terrestrial life can be approached as a Search for Extra- Terrestrial Homochirality (SETH). The natural choice for a SETH instrument is optical rotation, and we describe a novel miniaturized space polarimeter, called the SETH Cigar, which could be used to detect optical rotation as the homochiral signature of life on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. We believe that homochirality may be found in the subsurface layers on Mars as a relic of extinct life, and on other solar system bodies as a sign of advanced pre-biotic chemistry. We discuss the chiral GC-MS planned for the Roland lander of the Rosetta mission to a comet and conclude with theories of the physical origin of homochirality.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document